170
Views
1
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Molecular dynamics simulation study on the high-pressure behaviour of an AK16 peptide

&
Pages 1035-1040 | Received 31 Mar 2014, Accepted 18 Jun 2014, Published online: 12 Aug 2014

References

  • Silva JL, Foguel D, Royer CA. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci. 2001;26:612–618.
  • Takekiyo T, Imai T, Kato M, Taniguchi Y. Temperature and pressure effects on conformational equilibria of alanine dipeptide in aqueous solution. Biopolymers. 2004;73:283–290.
  • Takekiyo T, Shimizu A, Kato M, Taniguchi Y. Pressure-tuning FT-IR spectroscopic study on the helix-coil transition of Ala-rich oligopeptide in aqueous solution. Biochim Biophys Acta. 2005;1750:1–4.
  • Imamura H, Kato M. Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study. Proteins Struct Funct Bioinform. 2009;75:911–918.
  • Kitahara R, Yamada H, Akasaka K. Two folded conformers of ubiquitin revealed by high-pressure NMR. Biochemistry. 2001;40:13556–13563.
  • Kitahara R, Akasaka K. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. Proc Natl Acad Sci USA. 2003;100:3167–3172.
  • Kitahara R, Yokoyama S, Akasaka K. NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar–3 kbar. J Mol Biol. 2005;347:277–285.
  • Williamson MP, Akasaka K, Refaee M. The solution structure of bovine pancreatic trypsin inhibitor at high pressure. Protein Sci. 2003;12:1971–1979.
  • Refaee M, Tezuka T, Akasaka K, Williamson MP. Pressure-dependent changes in the solution structure of hen egg-white lysozyme. J Mol Biol. 2003;327:857–865.
  • Wilton DJ, Tunnicliffe RB, Kamatari YO, Akasaka K, Williamson MP. Pressure-induced changes in the solution structure of the GB1 domain of protein G. Proteins Struct Funct Bioinform. 2008;71:1432–1440.
  • Day R, García AE. Water penetration in the low and high pressure native states of ubiquitin. Proteins Struct Funct Bioinform. 2008;70:1175–1184.
  • Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration. J Phys Chem B. 2010;114:2281–2286.
  • Nisius L, Grzesiek S. Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nat Chem. 2012;4:711–717.
  • The PyMOL molecular graphics system, version 1.5.0.3, Schrödinger, LLC.
  • Scholtz JM, Baldwin RL. The mechanism of α-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118.
  • Chakrabartty A, Kortemme T, Baldwin RL. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994;3:843–852.
  • Chakrabartty A, Baldwin RL. Stability of α-helices. Adv Protein Chem. 1995;46:141–176.
  • Pace CN, Scholtz JM. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J. 1998;75:422–427.
  • Luo P, Baldwin RL. Interaction between water and polar groups of the helix backbone: an important determinant of helix propensities. Proc Natl Acad Sci USA. 1999;96:4930–4935.
  • Mitsutake A, Sugita Y, Okamoto Y. Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers. 2001;60:96–123.
  • Hukushima K, Nemoto K. Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn. 1996;65:1604–1608.
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151.
  • Mori Y, Okamoto Y. Replica-exchange molecular dynamics simulations for various constant temperature algorithms. J Phys Soc Jpn. 2010;79:074001.
  • Itoh SG, Okumura H. Replica-permutation method with the Suwa–Todo algorithm beyond the replica-exchange method. J Chem Theory Comput. 2013;9:570–581.
  • Berg BA, Neuhaus T. Multicanonical algorithms for first order phase transitions. Phys Lett B. 1991;267:249–253.
  • Berg BA, Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett. 1992;68:9–12.
  • Hansmann UHE, Okamoto Y, Eisenmenger F. Molecular dynamics, Langevin and hybrid Monte Carlo simulations in a multicanonical ensemble. Chem Phys Lett. 1996;259:321–330.
  • Nakajima N, Nakamura H, Kidera A. Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. J Phys Chem B. 1997;101:817–824.
  • Marinari E, Parisi G. Simulated tempering: a new Monte Carlo scheme. Europhys Lett. 1992;19:451–458.
  • Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN. New approach to Monte Carlo calculation of the free-energy: method of expanded ensembles. J Chem Phys. 1992;96:1776–1783.
  • Nishikawa T, Ohtsuka H, Sugita Y, Mikami M, Okamoto Y. Replica-exchange Monte Carlo method for Ar fluid. Prog Theor Phys Suppl. 2000;138:270–271.
  • Okabe T, Kawata M, Okamoto Y, Mikami M. Replica-exchange Monte Carlo method for the isobaric–isothermal ensemble. Chem Phys Lett. 2001;335:435–439.
  • Sugita Y, Okamoto Y. Free-energy calculations in protein folding by generalized-ensemble algorithms. In: Schlick T, editor. Lecture notes in computational science and engineering. Berlin: Springer; 2002. p. 303–331.
  • Paschek D, García AE. Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study. Phys Rev Lett. 2004;93:238105.
  • Okumura H, Okamoto Y. Molecular dynamics simulations in the multibaric–multithermal ensemble. Chem Phys Lett. 2004;391:248–253.
  • Okumura H, Okamoto Y. Monte Carlo simulations in generalized isobaric–isothermal ensembles. Phys Rev E. 2004;70:026702.
  • Okumura H, Okamoto Y. Monte Carlo simulations in multibaric–multithermal ensemble. Chem Phys Lett. 2004;383:391–396.
  • Okumura H, Okamoto Y. Multibaric–multithermal ensemble molecular dynamics simulations. J Comput Chem. 2006;27:379–395.
  • Mori Y, Okamoto Y. Generalized-ensemble algorithms for the isobaric–isothermal ensemble. J Phys Soc Jpn. 2010;79:074003.
  • Mori Y, Okamoto Y. Generalised-ensemble algorithms for studying temperature and pressure dependence of complex systems. Mol Simul. 2012;38:452–457.
  • Paschek D, Gnanakaran S, Garcia AE. Simulations of the pressure and temperature unfolding of an α-helical peptide. Proc Natl Acad Sci USA. 2005;102:6765–6770.
  • Okumura H, Okamoto Y. Multibaric–multithermal molecular dynamics simulation of alanine dipeptide in explicit water. Bull Chem Soc Jpn. 2007;80:1114–1123.
  • Okumura H, Okamoto Y. Temperature and pressure dependence of alanine dipeptide studied by multibaric–multithermal molecular dynamics simulations. J Phys Chem B. 2008;112:12038–12049.
  • Mitsutake A, Mori Y, Okamoto Y. Multi-dimensional multicanonical algorithm, simulated tempering, replica-exchange method, and all that. Phys Procedia. 2010;4:89–105.
  • Mori Y, Mitsutake A, Okamoto Y. Generalized-ensemble simulations in protein science. In: Kholmurodov K, editor. Proceedings of the 4th Japan-Russia international workshop MSSMBS'10 “molecular simulations studies in material and biological sciences” computational science and engineering. Hauppauge: Nova Science; 2011. p. 46–60.
  • Okumura H. Temperature and pressure denaturation of chignolin: folding and unfolding simulation by multibaric–multithermal molecular dynamics method. Proteins Struct Funct Bioinform. 2012;80:2397–2416.
  • Mitsutake A, Mori Y, Okamoto Y. Enhanced sampling algorithms. In: Monticelli L, Salonen E, editors. Biomolecular simulations: methods and protocols. New York: Humana Press; 2012. p. 153–195.
  • Mori Y, Okumura H. Pressure-induced helical structure of a peptide studied by simulated tempering molecular dynamics simulations. J Phys Chem Lett. 2013;4:2079–2083.
  • Mitsutake A, Okamoto Y. Multidimensional generalized-ensemble algorithms for complex systems. J Chem Phys. 2009;130:214105.
  • Ferrenberg AM, Swendsen RH. Optimized Monte Carlo data analysis. Phys Rev Lett. 1989;63:1195–1198.
  • Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13:1011–1021.
  • Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys. 2008;129:124105.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.
  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616.
  • Mackerell AD, Feig M, Brooks CL. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 2004;25:1400–1415.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an n·log(n) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Quigley D, Probert MIJ. Langevin dynamics in constant pressure extended systems. J Chem Phys. 2004;120:11432–11441.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.
  • Feller SE, Zhang YH, Pastor RW, Brooks BR. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys. 1995;103:4613–4621.
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637.
  • Joosten RP, Beek TAHT, Krieger E, Hekkelman ML, Hooft RWW, Schneider R, Sander C, Vriend G. A series of PDB related databases for everyday needs. Nucleic Acids Res. 2011;39:D411–D419.
  • Imai T, Takahiro T, Kovalenko A, Hirata F, Kato M, Taniguchi Y. Theoretical study of volume changes associated with the helix-coil transition of an alanine-rich peptide in aqueous solution. Biopolymers. 2005;79:97–105.
  • Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA. Size and sequence and the volume change of protein folding. J Am Chem Soc. 2011;133:6020–6027.
  • Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, Garcia-Moreno B, Royer CA. Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA. 2012;109:6945–6950.
  • Yoda T, Sugita Y, Okamoto Y. Comparisons of force fields for proteins by generalized-ensemble simulations. Chem Phys Lett. 2004;386:460–467.
  • Best RB, Hummer G. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B. 2009;113:9004–9015.
  • Hatch HW, Stillinger FH, Debenedetti PG. Computational study of the stability of the miniprotein trp-cage, the GB1 β-hairpin, and the AK16 peptide, under negative pressure. J Phys Chem B. doi:10.1021/jp410651u.
  • Herberhold H, Winter R. Temperature- and pressure-induced unfolding and refolding of ubiquitin: a static and kinetic Fourier transform infrared spectroscopy study. Biochemistry. 2002;41:2396–2401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.