145
Views
2
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Structure, dynamics and thermodynamic stability of high-pressure ices and clathrate hydrates

, , , &
Pages 868-873 | Received 31 Mar 2014, Accepted 31 Jul 2014, Published online: 17 Sep 2014

References

  • Salzmann CG, Radaelli PG, Slater B, Finney JL. The polymorphism of ice: five unresolved questions. Phys Chem Chem Phys. 2011;13:18468–18480.
  • Takii Y, Koga K, Tanaka H. A plastic phase of water from computer simulation. J Chem Phys. 2008;128:204501.
  • Petrenko VF, Whitworth RW. Physics of ice. New York, NY: Oxford University Press; 1999.
  • Salzmann C, Radaelli P, Mayer E, Finney J, Ice XV. A new thermodynamically stable phase of ice. Phys Rev Lett. 2009;103:105701.
  • Goldman N, Fried L, Kuo I-F, Mundy C. Bonding in the superionic phase of water. Phys Rev Lett. 2005;94:217801.
  • Cavazzoni C. Superionic and metallic states of water and ammonia at giant planet conditions. Science. 1999;283:44–46.
  • French M, Mattsson T, Nettelmann N, Redmer R. Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys Rev B. 2009;79:054107.
  • Redmer R, Mattsson TR, Nettelmann N, French M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus. 2011;211:798–803.
  • Handa YP, Klug DD, Whalley E. Difference in energy between cubic and hexagonal ice. J Chem Phys. 1986;84:7009–7010.
  • Tanaka H. Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices. J Chem Phys. 1998;108:4887–4893.
  • Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K. Infrared observation of the phase transitions of ice at low temperatures and pressures up to 50 GPa and the metastability of low-temperature ice VII. Phys Rev B. 2003;68:024108.
  • Besson J, Pruzan P, Klotz S, Hamel G, Silvi B, Nelmes RJ, Loveday JS, Wilson RM, Hull S. Variation of interatomic distances in ice VIII to 10 GPa. Phys Rev B. 1994;49:540–551.
  • Bridgman PW. The phase diagram of water to 45,000 kg/cm2. J Chem Phys. 1937;5:964–966.
  • Datchi F, Loubeyre P, LeToullec R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys Rev B. 2000;61:6535–6546.
  • Dubrovinskaia N, Dubrovinsky L. Melting curve of water studied in externally heated diamond-anvil cell. High Pressure Res. 2003;23:307–311.
  • Fei Y, Mao H, Hemley RJ. Thermal expansivity, bulk modulus, and melting curve of H2O–ice VII to 20 GPa. J Chem Phys. 1993;99:5369–5373.
  • Goncharov A, Goldman N, Fried L, Crowhurst J, Kuo I-F, Mundy C, Zaug J. Dynamic ionization of water under extreme conditions. Phys Rev Lett. 2005;94:125508.
  • Lin J-F, Militzer B, Struzhkin VV, Gregoryanz E, Hemley RJ, Mao H. High pressure–temperature Raman measurements of H2O melting to 22 GPa and 900 K. J Chem Phys. 2004;121:8423–8427.
  • Mishima O, Endo S. Melting curve of ice VII. J Chem Phys. 1978;68:4417–4418.
  • Pistorius CWFT, Pistorius MC, Blakey JP, Admiraal LJ. Melting curve of ice VII to 200 kbar. J Chem Phys. 1963;38:600–602.
  • Schwager B, Chudinovskikh L, Gavriliuk A, Boehler R. Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. J Phys Condens Matter. 2004;16:S1177–S1179.
  • Himoto K, Matsumoto M, Tanaka H. Rotational dynamics of plastic ice. J Phys Soc Jpn. 2012;81:SA023.
  • Himoto K, Matsumoto M, Tanaka H. Yet another criticality of water. Phys Chem Chem Phys. 2014;16:5081–5087.
  • Aragones JL, Conde MM, Noya EG, Vega C. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase. Phys Chem Chem Phys. 2009;11:543–555.
  • Aragones JL, Vega C. Plastic crystal phases of simple water models. J Chem Phys. 2009;130:244504.
  • Lokshin K, Zhao Y, He D, Mao W, Mao H-K, Hemley R, Lobanov M, Greenblatt M. Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. Phys Rev Lett. 2004;93:125503.
  • Struzhkin VV, Militzer B, Mao WL, Mao H-K, Hemley RJ. Hydrogen storage in molecular clathrates. Chem Rev. 2007;107:4133–4151.
  • Vos WL, Finger LW, Hemley RJ, Mao H. Novel H2–H2O clathrates at high pressures. Phys Rev Lett. 1993;71:3150–3153.
  • Eisenberg D, Kauzmann WJ. The structure and properties of water. New York: Oxford University Press; 1969.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112:8910–8922.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego, CA: Academic Press; 2002.
  • Tanaka H. unpublished results.
  • Dang LX. The nonadditive intermolecular potential for water revised. J Chem Phys. 1992;97:2659–2660.
  • Hirai H, Kagawa S, Tanaka T, Matsuoka T, Yagi T, Ohishi Y, Nakano S, Yamamoto Y, Irifune T. Structural changes of filled ice Ic hydrogen hydrate under low temperatures and high pressures from 5 to 50 GPa. J Chem Phys. 2012;137:074505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.