283
Views
7
CrossRef citations to date
0
Altmetric
Articles

Twin boundary spacing-dependent deformation behaviours of twinned silver nanowires

, , , &
Pages 1546-1552 | Received 09 Oct 2014, Accepted 12 Dec 2014, Published online: 07 Jan 2015

References

  • Capolungo L, Spearot DE, Cherkaoui M, McDowell DL, Qu J, Jacob KI. Dislocation nucleation from bicrystal interfaces and grain boundary ledges: relationship to nanocrystalline deformation. J Mech Phys Solids. 2007;55(11):2300–2327.
  • Zhong S, Koch T, Wang M, Scherer T, Walheim S, Hahn H, Schimmel T. Nanoscale twinned copper nanowire formation by direct electrodeposition. Small. 2009;5(20):2265–2270.
  • Algra RE, Verheijen MA, Borgstrom MT, Feiner L-F, Immink G, van Enckevort WJP, Vlieg E, Bakkers EPAM. Twinning superlattices in indium phosphide nanowires. Nature. 2008;456(7220):369–372.
  • Johansson J, Karlsson LS, Svensson CPT, Martensson T, Wacaser BA, Deppert K, Samuelson L, Seifert W. Structural properties of (111)B-oriented III-V nanowires. Nat Mater. 2006;5(7):574–580.
  • Wang DH, Wang DQ, Hao YJ, Jin GQ, Guo XY, Tu KN. Periodically twinned SiC nanowires. Nanotechnology. 2008;19(21):215602.
  • Shim HW, Zhang Y, Huang H. Twin formation during SiC nanowire synthesis. J Appl Phys. 2008;104(6):063511.
  • Sansoz F, Deng C. Comment on ‘Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries’ [Appl. Phys. Lett. 90, 151909, (2007)]. Appl Phys Lett. 2008;93(8):086101.
  • Wu B, Heidelberg A, Boland JJ, Sader JE, Sun XM, Li YD. Microstructure-hardened silver nanowires. Nano Lett. 2006;6(3):468–472.
  • Sangid MD, Ezaz T, Sehitoglu H, Robertson IM. Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 2011;59(1):283–296.
  • Bernardi M, Raja SN, Lim SK. Nanotwinned gold nanowires obtained by chemical synthesis. Nanotechnology. 2010;21(28):285607.
  • Wen YH, Huang R, Zhu ZZ, Wang Q. Mechanical properties of platinum nanowires: an atomistic investigation on single-crystalline and twinned structures. Comput Mater Sci. 2012;55:205–210.
  • Zhang JJ, Xu FD, Yan YD, Sun T. Detwinning-induced reduction in ductility of twinned copper nanowires. Chin Sci Bull. 2013;58(6):684–688.
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352.
  • Lu L, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature. Science. 2000;287(5457):1463–1466.
  • Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science. 2009;323(5914):607–610.
  • Lu L, Shen YF, Chen XH, Qian LH, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304(5669):422–426.
  • McDowell MT, Leach AM, Gaill K. On the elastic modulus of metallic nanowires. Nano Lett. 2008;8(11):3613–3618.
  • Guo X, Xia YZ. Repulsive force vs. source number: competing mechanisms in the yield of twinned gold nanowires of finite length. Acta Mater. 2011;59(6):2350–2357.
  • Kulkarni Y, Asaro RJ. Are some nanotwinned FCC metals optimal for strength, ductility and grain stability? Acta Mater. 2009;57(16):4835–4844.
  • Zhang YF, Huang HC, Atluri SN. Strength asymmetry of twinned copper nanowires under tension and compression. CMES-Comp Model Eng Sci. 2008;35(3):215–225.
  • Ding F, Li H, Wang JL, Shen WF, Wang GH. Elastic deformation and stability in pentagonal nanorods with multiple twin boundaries. J Phys Condens Matter. 2002;14(1):113–122.
  • Cao AJ, Wei YG, Mao SX. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl Phys Lett. 2007;90(15):151909.
  • Deng C, Sansoz F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 2009;9(4):1517–1522.
  • Deng C, Sansoz F. Near-ideal strength in gold nanowires achieved through microstructural design. ACS Nano. 2009;3(10):3001–3008.
  • Deng C, Sansoz F. Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys Rev B. 2010;81(15):155430.
  • Deng C, Sansoz F. Size-dependent yield stress in twinned gold nanowires mediated by site-specific surface dislocation emission. Appl Phys Lett. 2009;95(9):091914.
  • Jang D, Li X, Gao H, Greer JR. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol. 2012;7(9):594–601.
  • Zhao JW, Yin X, Liang S, Liu YH, Wang DX, Deng SY, Hou J. Ultra-large scale molecular dynamics simulation for nano-engineering. Chem Res Chin Univ. 2008;24(3):367–370.
  • Wang DX, Zhao JW, Hu S, Yin X, Liang S, Liu YH, Deng SY. Where, and how, does a nanowire break? Nano Lett. 2007;7(5):1208–1212.
  • Liu YH, Zhao JW, Wang FY. Influence of length on shock-induced breaking behavior of copper nanowires. Phys Rev B. 2009;80(11):115417.
  • Liu YH, Wang FY, Zhao JW, Jiang LY, Kiguchi M, Murakoshi K. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire. Phys Chem Chem Phys. 2009;11(30):6514–6519.
  • Zhao JW, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu HM. Dynamic characterization of the postbreaking behavior of a nanowire. J Phys Chem C. 2008;112(50):20088–20094.
  • Gao YJ, Wang FY, Zhu TM, Zhao JW. Investigation on the mechanical behaviors of copper nanowires under torsion. Comput Mater Sci. 2010;49(4):826–830.
  • Gao YJ, Wang HB, Zhao JW, Sun CQ, Wang FY. Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading. Comput Mater Sci. 2011;50(10):3032–3037.
  • Sun YL, Sun W, Fu YQ, Wang FY, Gao YJ, Zhao JW. The deformation behaviors of silver nanowires including 3D defects under tension. Comput Mater Sci. 2013;79:63–68.
  • Johnson RA. Analytic nearest-neighbor model for FCC metals. Phys Rev B. 1988;37(8):3924–3931.
  • Johnson RA. Relationship between defect energies and embedded-atom-method parameters. Phys Rev B. 1988;37(11):6121–6125.
  • Johnson RA. Alloy models with the embedded-atom method. Phys Rev B. 1989;39(17):12554–12559.
  • Wu HA. Molecular dynamics study of the mechanics of metal nanowires at finite temperature. Eur J Mech A-Solid. 2006;25(2):370–377.
  • Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58(17):11085–11088.
  • Deng C, Sansoz F. Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni. Acta Mater. 2009;57(20):6090–6101.
  • Gao YJ, Fu YQ, Sun W, Sun YL, Wang HB, Wang FY, Zhao JW. Investigation on the mechanical behavior of fivefold twinned silver nanowires. Comput Mater Sci. 2012;55:322–328.
  • Cao AJ, Wei YG. Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys Rev B. 2006;74(21):214108.
  • Deng C, Sansoz F. Repulsive force of twin boundary on curved dislocations and its role on the yielding of twinned nanowires. Scr Mater. 2010;63(1):50–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.