388
Views
5
CrossRef citations to date
0
Altmetric
Molecular simulation of framework materials

Molecular simulation of size-selective gas adsorption in idealised carbon nanotubes

, &
Pages 1388-1395 | Received 17 Oct 2014, Accepted 02 Jan 2015, Published online: 28 Apr 2015

References

  • Yang RT. Gas separation by adsorption processes. Boston, MA: Butterworths; 1987.
  • Kerry FG. Industrial gas handbook: gas separation and purification. Boca Raton, FL: CRC Press; 2007.
  • Yang RT. Adsorbents: fundamentals and applications. Hoboken, NJ: Wiley; 2003.
  • Zhao JJ. Gas adsorption of carbon nanotubes: tube–molecule interaction and technological applications. Curr Nanosci. 2005;1(2):169–176. doi:10.2174/1573413054065312.
  • Kondratyuk P, Yates JT. Molecular views of physical adsorption inside and outside of single-wall carbon nanotubes. Acc Chem Res. 2007;40(10):995–1004. doi:10.1021/ar700013c.
  • Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 2009;38(5):1477–1504. doi:10.1039/b802426j.
  • Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations. Chem Rev. 2012;112(2):869–932. doi:10.1021/cr200190s.
  • He Y, Zhou W, Qian G, Chen B. Methane storage in metal–organic frameworks. Chem Soc Rev. 2014;43(16):5657–5678. doi:10.1039/C4CS00032C.
  • Mitra T, Jelfs KE, Schmidtmann M, Ahmed A, Chong SY, Adams DJ, Cooper AI. Molecular shape sorting using molecular organic cages. Nat Chem. 2013;5(4):276–281. doi:10.1038/nchem.1550.
  • Perry JJ, Teich-McGoldrick SL, Meek ST, Greathouse JA, Haranczyk M, Allendorf MD. Noble gas adsorption in metal–organic frameworks containing open metal sites. J Phys Chem C. 2014;118(22):11685–11698. doi:10.1021/jp501495f.
  • Parkes MV, Staiger CL, Perry IV JJ, Allendorf MD, Greathouse JA. Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Phys Chem Chem Phys. 2013;15(23):9093–9106. doi:10.1039/c3cp50774b.
  • Lucena SMP, Mileo PGM, Silvino PFG, Cavalcante CL. Unusual adsorption site behavior in PCN-14 metal–organic framework predicted from Monte Carlo simulation. J Am Chem Soc. 2011;133(48):19282–19285. doi:10.1021/ja207593c.
  • Kuznicki SM, Anson A, Koenig A, Kuznicki TM, Haastrup T, Eyring EM, Hunter D. Xenon adsorption on modified ETS-10. J Phys Chem C. 2007;111(4):1560–1562. doi:10.1021/jp067630t.
  • Nguyen HG, Konya G, Eyring EM, Hunter DB, Truong TN. Theoretical study on the interaction between xenon and positively charged silver clusters in gas phase and on the (001) chabazite surface. J Phys Chem C. 2009;113(29):12818–12825. doi:10.1021/jp902798w.
  • Liu J, Strachan DM, Thallapally PK. Enhanced noble gas adsorption in Ag@MOF-74Ni. Chem Commun. 2013;50(4):466–468. doi:10.1039/c3cc47777k.
  • Ansón A, Kuznicki SM, Kuznicki T, Haastrup T, Wang Y, Lin CCH, Sawada JA, Eyring EM, Hunter D. Adsorption of argon, oxygen, and nitrogen on silver exchanged ETS-10 molecular sieve. Microporous Mesoporous Mater. 2008;109(1-3):577–580. doi:10.1016/j.micromeso.2007.04.026.
  • Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE, Hasell T, Little MA, Kewley A, Briggs ME, Stephenson A, Thomas KM, Armstrong JA, Bell J, Busto J, Noel R, Liu J, Strachan DM, Thallapally PK, Cooper AI. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat Mater. 2013;13(10):954–960. doi:10.1038/nmat4035.
  • Haldoupis E, Nair S, Sholl DS. Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. J Am Chem Soc. 2010;132(21):7528–7539. doi:10.1021/ja1023699.
  • Zeitler TR, Allendorf MD, Greathouse JA. Grand canonical Monte Carlo simulation of low-pressure methane adsorption in nanoporous framework materials for sensing applications. J Phys Chem C. 2012;116(5):3492–3502. doi:10.1021/jp208596e.
  • Hansen N, Agbor FAB, Keil FJ. New force fields for nitrous oxide and oxygen and their application to phase equilibria simulations. Fluid Phase Equilib. 2007;259(2):180–188. doi:10.1016/j.fluid.2007.07.014.
  • Potoff JJ, Siepmann JI. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001;47(7):1676–1682. doi:10.1002/aic.690470719.
  • Pellenq RJM, Levitz PE. Capillary condensation in a disordered mesoporous medium: a grand canonical Monte Carlo study. Mol Phys. 2002;100(13):2059–2077. doi:10.1080/00268970210129265.
  • Goodbody SJ, Watanabe K, Macgowan D, Walton J, Quirke N. Molecular simulation of methane and butane in silicalite. J Chem Soc Faraday Trans. 1991;87(13):1951–1958. doi:10.1039/ft9918701951.
  • Zollo G, Gala F. Atomistic modeling of gas adsorption in nanocarbons. J Nanomater. 2011;2011:152490.
  • Banerjee S, Murad S, Puri IK. Hydrogen storage in carbon nanostructures: possibilities and challenges for fundamental molecular simulations. Proc IEEE. 2006;94(10):1806–1814. doi:10.1109/JPROC.2006.883703.
  • Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube. Nature. 2001;414(6860):188–190. doi:10.1038/35102535.
  • Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem Rev. 2008;108(12):5014–5034. doi:10.1021/cr078140f.
  • Kalra A, Hummer G, Garde S. Methane partitioning and transport in hydrated carbon nanotubes. J Phys Chem B. 2004;108(2):544–549. doi:10.1021/jp035828x.
  • Bartuś K, Bródka A. Methane in carbon nanotube: molecular dynamics simulation. Mol Phys. 2011;109(13):1691–1699. doi:10.1080/00268976.2011.587456.
  • Kumar KV, Rodriguez-Reinoso F. Co-adsorption of N2 in the presence of CH4 within carbon nanospaces: evidence from molecular simulations. Nanotechnology. 2013;24:035401. 10.1088/0957-4484/24/3/035401.
  • Bartuś K, Bródka A. Temperature study of structure and dynamics of methane in carbon nanotubes. J Phys Chem C. 2014;118(22):12010–12016. doi:10.1021/jp501959r.
  • Shkolin AV, Fomkin AA, Strizhenov EM, Pulin AL. Adsorption of methane on model adsorbents formed from single-wall carbon nanotubes. Prot Met Phys Chem Surf. 2014;50(3):279–286. doi:10.1134/S2070205114030186.
  • Meng XW, Wang Y, Zhao YJ, Huang JP. Distinct transport properties of O2 and CH4 across a carbon nanotube. Mol Phys. 2013;111(8):1000–1004. doi:10.1080/00268976.2012.762126.
  • Lee KH, Sinnott SB. Equilibrium and nonequilibrium transport of oxygen in carbon nanotubes. Nano Lett. 2005;5(4):793–798. doi:10.1021/nl0502219.
  • Trucano P, Chen R. Structure of graphite by neutron diffraction. Nature. 1975;258(5531):136–137. doi:10.1038/258136a0.
  • Brennan JK, Thomson KT, Gubbins KE. Adsorption of water in activated carbons: effects of pore blocking and connectivity. Langmuir. 2002;18(14):5438–5447. doi:10.1021/la0118560.
  • Hibbe F, Chmelik C, Heinke L, Pramanik S, Li J, Ruthven DM, Tzoulaki D, Kärger Jr. The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. J Am Chem Soc. 2011;133(9):2804–2807. doi:10.1021/ja108625z.
  • Babarao R, Jiang JW. Upgrade of natural gas in rho zeolite-like metal–organic framework and effect of water: a computational study. Energy Environ Sci. 2009;2(10):1088–1093. doi:10.1039/b909861e.
  • Yang L, Sandler SI, Vlachos DG, Peng CJ, Liu HL, Hu Y. Adsorption and diffusion of methanol, glycerol, and their mixtures in a metal organic framework. Ind Eng Chem Res. 2011;50(24):14084–14089. doi:10.1021/ie201807z.
  • Awati RV, Ravikovitch PI, Sholl DS. Efficient and accurate methods for characterizing effects of framework flexibility on molecular diffusion in zeolites: CH4 diffusion in eight member ring zeolites. J Phys Chem C. 2013;117(26):13462–13473. doi:10.1021/jp402959t.
  • Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MSP. Hole: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph Model. 1996;14(6):354–360. doi:10.1016/S0263-7855(97)00009-X.
  • Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi:10.1006/jcph.1995.1039.
  • Martin MG. MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol Simul. 2013;39(14–15):1212–1222. doi:10.1080/08927022.2013.828208.
  • Shevade AV, Jiang SY, Gubbins KE. Molecular simulation study of water–methanol mixtures in activated carbon pores. J Chem Phys. 2000;113(16):6933–6942. doi:10.1063/1.1309012.
  • Parkes MV, Demir H, Teich-McGoldrick SL, Sholl DS, Greathouse JA, Allendorf MD. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8. Microporous Mesoporous Mater. 2014;194:190–199. doi:10.1016/j.micromeso.2014.03.027.
  • Haldoupis E, Watanabe T, Nair S, Sholl DS. Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem. 2012;13(15):3449–3452. doi:10.1002/cphc.201200529.
  • Zhang K, Lively RP, Zhang C, Chance RR, Koros WJ, Sholl DS, Nair S. Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations. J Phys Chem Lett. 2013;4(21):3618–3622. doi:10.1021/jz402019d.
  • Gutiérrez-Sevillano JJ, Caro-Pérez A, Dubbeldam D, Calero S. Molecular simulation investigation into the performance of Cu-BTC metal–organic frameworks for carbon dioxide–methane separations. Phys Chem Chem Phys. 2011;13(45):20453–20460. doi:10.1039/c1cp21761e.
  • Kumar AVA, Yashonath S, Sluiter M, Kawazoe Y. Rotational motion of methane within the confines of zeolite NaCaA: molecular dynamics and ab initio calculations. Phys Rev E. 2002;65. :011203. 10.1103/PhysRevE.65.011203.
  • Mulero A, Cuadros F. Rare-gas adsorption. In: Toth J, editor. Adsorption: theory, modeling, and analysis. New York: Marcel Dekker, Inc. p. 433–507.
  • Abdul Razak Ma, Do DD, Birkett GR. Evaluation of the interaction potentials for methane adsorption on graphite and in graphitic slit pores. Adsorption. 2011;17(2):385–394. doi:10.1007/s10450-011-9335-5.
  • Gómez-gualdrón DA, Wilmer CE, Farha OK, Hupp JT, Snurr RQ. Exploring the limits of methane storage and delivery in nanoporous materials. J Phys Chem C. 2014;118(13):6941–6951. doi:10.1021/jp502359q.
  • Sikora BJ, Wilmer CE, Greenfield ML, Snurr RQ. Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks. Chem Sci. 2012;3(7):2217–2223. doi:10.1039/c2sc01097f.
  • Meek ST, Greathouse JA, Allendorf MD. Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater. 2011;23(2):249–267. doi:10.1002/adma.201002854.
  • Cao FL, Sun YX, Wang L, Sun H. Kinetic effects in predicting adsorption using the GCMC method – using CO2 adsorption on ZIFs as an example. RSC Adv. 2014;4(52):27571–27581. doi:10.1039/c4ra03768e.
  • Van Heest T, Teich-McGoldrick SL, Greathouse JA, Allendorf MD, Sholl DS. Identification of metal–organic framework materials for adsorption separation of rare gases: applicability of ideal adsorbed solution theory (IAST) and effects of inaccessible framework regions. J Phys Chem C. 2012;116(24):13183–13195. doi:10.1021/jp302808j.
  • Bétard A, Wannapaiboon S, Fischer RA. Assessing the adsorption selectivity of linker functionalized, moisture-stable metal–organic framework thin films by means of an environment-controlled quartz crystal microbalance. Chem Commun. 2012;48(85):10493–10495. doi:10.1039/c2cc34608g.
  • Henke S, Fischer RA. Gated channels in a honeycomb-like zinc–dicarboxylate–bipyridine framework with flexible alkyl ether side chains. J Am Chem Soc. 2011;133(7):2064–2067. doi:10.1021/ja109317e.
  • McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2 (dobpdc). J Am Chem Soc. 2012;134(16):7056–7065. doi:10.1021/ja300034j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.