237
Views
1
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

A hybrid-type approach with MD and DFT calculations for evaluation of redox potential of molecules

, , , &
Pages 936-941 | Received 31 Jan 2014, Accepted 23 Jan 2015, Published online: 05 Mar 2015

References

  • Marcus RA. Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys. 1993;65(3):599–610. doi:10.1103/RevModPhys.65.599.
  • Gray HB, Winkler JR. Electron transfer in proteins. Annu Rev Biochem. 1996;65(1):537–561. doi:10.1146/annurev.bi.65.070196.002541.
  • Voet D, Voet JG. Biochemistry. 3rd ed. New York: Wiley; 2004.
  • Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and reactive oxygen species in stress signaling. Oncogene. 1999;18(45):6104–6111. doi:10.1038/sj.onc.1203128.
  • Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P. Molecular cell biology. 6th ed. New York: W.H. Freeman & Co Ltd; 2007.
  • Yachandra VK, DeRose VJ, Latimer MJ, Mukerji I, Sauer K, Klein MP. Where plants make oxygen: a structural model for the photosynthetic oxygen-evolving manganese cluster. Science. 1993;260(5108):675–679. doi:10.1126/science.8480177.
  • Gray HB, Winkler JR. Electron flow through metalloproteins. Biochim Biophys Acta. 2010;1797(9):1563–1572. doi:10.1016/j.bbabio.2010.05.001.
  • Atanassov P, Apblett C, Banta S, Brozik S, Barton SC, Cooney M, Liaw BY, Mukerjee S, Minteer SD. Enzymatic biofuel cells. Electrochem Soc Interface. 2007;16(2):28–31  (Summer).
  • Goh EB, Baidoo EEK, Keasling JD, Beller HR. Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol. 2012;78(1):70–80. doi:10.1128/AEM.06785-11.
  • Ikeda T, Kano K. An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. J Biosci Bioeng. 2001;92(1):9–18. doi:10.1016/S1389-1723(01)80191-2.
  • Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem. 2010;2:724–761.
  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongates at 3.8 Å resolution. Nature. 2001;409(6821):739–743. doi:10.1038/35055589.
  • Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473(7345):55–60. doi:10.1038/nature09913.
  • Kok B, Forbush B, McGloin M. Cooperation of charges in photosynthetic O2 evolution – I. A linear four step mechanism. Photochem Photobiol. 1970;11(6):457–475. doi:10.1111/j.1751-1097.1970.tb06017.x.
  • Kollman P. Free energy calculations: Applications to chemical and biochemical phenomena. Chem Rev. 1993;93(7):2395–2417. doi:10.1021/cr00023a004.
  • Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem Phys. 1981;55(1):117–129. doi:10.1016/0301-0104(81)85090-2.
  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed. 2009;48(7):1198–1229. doi:10.1002/anie.200802019.
  • Matsui T, Kitagawa Y, Okumura M, Shigeta Y, Sakaki S. Consistent scheme for computing standard hydrogen electrode and redox potentials. J Comput Chem. 2013;34(1):21–26. doi:10.1002/jcc.23100.
  • Haya L, Sayago FJ, Mainar AM, Cativiela C, Urieta JS. Quantum-chemical predictions of redox potentials of carbamates in methanol. Phys Chem Chem Phys. 2011;13(39):17696–17703. doi:10.1039/c1cp21576k.
  • Roy LE, Jakubikova E, Guthrie MG, Batista ER. Calculation of one-electron redox potentials revisited. Is it possible to calculate accurate potentials with density functional methods? J Phys Chem A. 2009;113(24):6745–6750. doi:10.1021/jp811388w.
  • Fu Y, Liu L, Yu HZ, Wang YM, Guo QX. Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J Am Chem Soc. 2005;127(19):7227–7234. doi:10.1021/ja0421856.
  • Winget P, Cramer CJ, Truhlar DG. Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theor Chem Acc. 2004;112(4):217–227. doi:10.1007/s00214-004-0577-0.
  • Baik MH, Friesner RA. Computing redox potentials in solution: density functional theory as a tool for rational design of redox agents. J Phys Chem A. 2002;106(32):7407–7412. doi:10.1021/jp025853n.
  • Winget P, Weber EJ, Cramer CJ, Truhlar DG. Computational electrochemistry: aqueous one-electron oxidation potentials for substituted anilines. Phys Chem Chem Phys. 2000;2(6):1231–1239. doi:10.1039/a909076b.
  • Kirkwood JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3(5):300–313. doi:10.1063/1.1749657.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1987.
  • Matubayasi N, Nakahara M. Theory of solutions in the energetic representation. I. Formulation. J Chem Phys. 2000;113(15):6070–6081. doi:10.1063/1.1309013.
  • Matubayasi N, Nakahara M. Theory of solutions in the energy representation. II. Functional for the chemical potential. J Chem Phys. 2002;117(8):3605–3616. doi:10.1063/1.1495850.
  • Matubayasi N, Nakahara M. Theory of solutions in the energy representation. III. Treatment of the molecular flexibility. J Chem Phys. 2003;119(18):9686–9702. doi:10.1063/1.1613938.
  • Karino Y, Fedorov MV, Matubayasi N. End-point calculation of solvation free energy of amino-acid analogs by molecular theories of solution. Chem Phys Lett. 2010;496(4–6):351–355. doi:10.1016/j.cplett.2010.07.054.
  • Hu H, Yang W. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem. 2008;59(1):573–601. doi:10.1146/annurev.physchem.59.032607.093618.
  • Hori T, Takahashi H, Furukawa S, Nakano M, Yang W. Computational study on the relative acidity of acetic acid by the QM/MM method combined with the theory of energy representation. J Phys Chem B. 2007;111(3):581–588. doi:10.1021/jp066334d.
  • Zeng Z, Hu H, Fu X, Yang W. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method. J Chem Phys. 2009;130  :164111-1-8.
  • Takahashi H, Ohno H, Kishi R, Nakano M, Matubayasi M. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation. J Chem Phys. 2008;129  :205103-1-14.
  • Sulpizi M, Raugei S, Vondele JV, Carloni P, Sprik M. Calculation of redox properties: understanding short- and long-range effects in rubredoxin. J Phys Chem B. 2007;111(15):3969–3976. doi:10.1021/jp067387y.
  • Cascella M, Magistrato A, Tavernelli I, Carloni P, Rothlisberger U. Role of protein frame and solvent for the redox properties of azurin from Pseudomonas aeruginosa. Proc Natl Acad Sci. 2006;103(52):19641–19646. doi:10.1073/pnas.0607890103.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652. doi:10.1063/1.464913.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789. doi:10.1103/PhysRevB.37.785.
  • Dill JD, Pople JA. Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J Chem Phys. 1975;62(7):2921–2923. doi:10.1063/1.430801.
  • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21+G basis set for first-row elements, Li–F. J Comput Chem. 1983;4(3):294–301. doi:10.1002/jcc.540040303.
  • Weiner SJ, Kollman PA. An all atom force field for simulations of proteins and nucleic acids. J Comput Chem. 1986;7(2):230–252. doi:10.1002/jcc.540070216.
  • Duan Y, Wu C, Chowdhury S, Lee MC, Zhang G, Xiong W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003;24(16):1999–2012. doi:10.1002/jcc.10349.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935. doi:10.1063/1.445869.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N√log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092. doi:10.1063/1.464397.
  • ERMOD. Available from: http://sourceforge.net/projects/ermod/.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision D.02. Wallingford, CT: Gaussian, Inc; 2004.
  • Iwayama M, Kawaguchi K, Saito H, Nagao H. Structure and hydration free energy of ketone compound in neutral and cationic state by molecular dynamics simulation. Recent Dev Comput Sci. 2013;4:59–69.
  • Besler BH, Merz KM, Kollman PA. Atomic charges derived from semiempirical methods. J Comput Chem. 1990;11(4):431–439. doi:10.1002/jcc.540110404.
  • Lide DR. CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press; 2004.
  • Wang J, Wang W, Huo S, Lee M, Kollman PA. Solvation model based on weighted solvent accessible surface area. J Phys Chem B. 2001;105(21):5055–5067. doi:10.1021/jp0102318.
  • Baker RH, Adkins H. Oxidation potentials of ketones and an aldehyde. J Am Chem Soc. 1940;62(12):3305–3314. doi:10.1021/ja01869a010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.