124
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of surface-screening parameter of the Yukawa potential model on vapour–liquid phase coexistence and critical-point properties of confined Yukawa fluid

Pages 413-419 | Received 11 Apr 2015, Accepted 31 May 2015, Published online: 29 Jul 2015

References

  • Pellicane G, Costa D, Caccamo C. Theory and simulation of short-range models of globular protein solutions. J Phys Condens Matter. 2004;16:S4923–S4936.
  • Rosenbaum D, Zamora PC, Zukoski CF. Phase behavior of small attractive colloidal particles. Phys Rev Lett. 1996;76:150–153.
  • Fu D, Wu J. A self-consistent approach for modelling the interfacial properties and phase diagrams of Yukawa. Lennard-Jones and square-well fluids. Mol Phys. 2004;102:1479–1488.
  • Scalise OH, Henderson DJ. On the phase equilibrium of polar fluids using the dipolar Yukawa fluid molecular model. J Chem Eng Data. 2009;54:1472–1476.
  • Yu YX, You FQ, Tang Y, Gao GH, Li YG. Structure and adsorption of a hard-core multi-Yukawa fluid confined in a slitlike pore: grand canonical Monte Carlo simulation and density functional study. J Phys Chem B. 2006;110:334–341.
  • You FQ, Yu YX, Gao GH. Structure of inhomogeneous attractive and repulsive hard-core Yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study. J Phys Chem B. 2005;109:3512–3518.
  • Fu D, Li YG. Investigation of the phase equilibria for nonpolar chainlike fluids by the Yukawa potential and renormalization-group theory. Ind Eng Chem Res. 2004;43:2271–2279.
  • Zhou S. Perturbation density functional theory for density profile of a nonuniform and uniform hard core attractive Yukawa model fluid. J Phys Chem B. 2002;106:7674–7680.
  • Donkó Z, Goree J, Hartmann P, Liu B. Time-correlation functions and transport coefficients of two-dimensional Yukawa liquids. Phys Rev E. 2009;79:026401–026412.
  • Guerin H. Analytical equations of state for double Yukawa and hard core double Yukawa fluids: application to simple and colloidal fluids. Phys A. 2002;304:327–339.
  • Karanikas S, Dzubiella J, Moncho-Jordá A, Louis AA. Density profiles and solvation forces for a Yukawa fluid in a slit pore. J Chem Phys. 2008;128:204704-204701–204704-204710.
  • Tata BVR, Rajalakshmi M, Arora AK. Vapor–liquid condensation in charged colloidal suspensions. Phys Rev Lett. 1992;69:3778–3781.
  • Ito K, Yoshida H, Ise N. Void structure in colloidal dispersions. Science. 1994;263:66–61-66-68.
  • Ise N, Konishi T, Tata BVR. How homogeneous are homogeneous dispersions? Counterion-mediated attraction between like-charged species. Langmuir. 1999;15:4176–4184.
  • Caccamo C, Pellicane G, Costa D. Phase transitions in hard-core Yukawa fluids: toward a theory of phase stability in protein solutions. J Phys Condens Matter. 2000;12:A437.
  • Kristóf T, Boda D, Liszi J, Henderson D, Carlson E. Vapour-liquid equilibrium of the charged Yukawa fluid from Gibbs ensemble Monte Carlo simulations and the mean spherical approximation. Mol Phys. 2003;101:1611–1616.
  • Olivares W, Degreve L, Villegas JC, Lozada-Cassou M. Liquid correlation across the walls in a slit pore: effect on the wetting and drying transition. Phys Rev E. 2002;65:061702–061704.
  • Caccamo C, Pellicane G, Costa D, Pini D, Stell G. Thermodynamically self-consistent theories of fluids interacting through short-range forces. Phys Rev E. 1999;60:5533–5543.
  • Pini D, Stell G, Wilding NB. Liquid-gas phase behaviour of an argon-like fluid modelled by the hard-core two Yukawa potential. J Chem Phys. 2001;115:2702–2708.
  • Cummings PT. Exact solution of the mean spherical approximation for a model liquid metal potential: I. Method of solution. J Phys F Metal Phys. 1979;9:1477–1488.
  • Waisman E. The radial distribution function for a fluid of hard spheres at high densities: mean spherical integral equation approach. Mol Phys. 1973;25:45–48.
  • Klapp SHL, Qu S, Klitzing RV. Long-range interactions between soft colloidal particles in slit − pore geometries. J Phys Chem B. 2007;111:1296–1303.
  • Klapp SHL, Zeng Y, Qu D, Klitzing RV. Surviving structure in colloidal suspensions squeezed from 3D to 2D. Phys Rev Lett. 2008;100:118303-118301–118303-118304.
  • Anderson VJ, Lekkerkerker HNW. Insights into phase transition kinetics from colloid science. Nature. 2002;416:811–815.
  • Zangi R. Water confined to a slab geometry: a review of recent computer simulation studies. J Phys Condens Matter. 2004;16:S5371–S5388.
  • Rivera JL, McCabe C, Cummings PT. Layering behavior and axial phase equilibria of pure water and water + carbon dioxide inside single wall carbon nanotubes. Nano Lett. 2002;2:1427–1431.
  • Singh SK, Saha AK, Singh JK. Molecular simulation study of vapor–liquid critical properties of a simple fluid in attractive slit pores: crossover from 3D to 2D. J Phys Chem B. 2010;114:4283–4292.
  • Renth F, Poon WCK, Evans RML. Phase transition kinetics in colloid-polymer mixtures at triple coexistence: kinetic maps from free-energy landscapes. Phys Rev E. 2001;64:031402–0314010.
  • Wu J, Prausnitz J. Phase equilibria in a system of breathing molecules. Fluid Phase Equilib. 2002;194:689–700.
  • Tavares FW, Sandler SI. Phase equilibria for the mean-force potential of globular protein solutions. AIChE J. 1997;43:218–231.
  • Dijkstra M. Phase behavior of hard spheres with a short-range Yukawa attraction. Phys Rev E. 2002;66:021402–021406.
  • Bolhuis P, Hagen M, Frenkel D. Isostructural solid-solid transition in crystalline systems with short-ranged interaction. Phys Rev E. 1994;50:4880–4890.
  • Pini D, Stell G, Wilding NB. A liquid state theory that remains successful in the critical region. Mol Phys. 1998;95:483–494.
  • Hagen MHJ, Frenkel D. Determination of phase diagrams for the hard-core attractive Yukawa system. J Chem Phys. 1994;101:4093–4097.
  • Singh JK. Surface tension and vapour-liquid phase coexistence of variable-range hard-core attractive Yukawa fluids. Mol Simul. 2009;35:880–887.
  • Orea P, Duda Y. On the corresponding states law of the Yukawa fluid. J Chem Phys. 2008;128:134508-134501–134508-134504.
  • Duda Y, Romero-Martínez A, Orea P. Phase diagram and surface tension of the hard-core attractive Yukawa model of variable range: Monte Carlo simulations. J Chem Phys. 2007;126:224510-224511–224510-224514.
  • El Mendoub EB, Wax JF, Jakse N. Phase diagram of the hard-core Yukawa fluid within the integral equation method. Phys Rev E. 2006;74:052501–052504.
  • Paricaud P. A general perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. J Chem Phys. 2006;124:154505-154501–154505-154517.
  • Tuinier R, Fleer GJ. Critical endpoint and analytical phase diagram of attractive hard-core Yukawa spheres. J Phys Chem B. 2006;110:20540–20545.
  • Shukla KP. Phase equilibria and thermodynamic properties of hard core Yukawa fluids of variable range from simulations and an analytical theory. J Chem Phys. 2000;112:10358–10367.
  • Prinsen P, Odijk T. Fluid-crystal coexistence for proteins and inorganic nanocolloids: dependence on ionic strength. J Chem Phys. 2006;125:074903-074901–074903-074912.
  • Broide ML, Tominc TM, Saxowsky MD. Using phase transitions to investigate the effect of salts on protein interactions. Phys Rev E. 1996;53:6325–6335.
  • Largo J, Miller MA, Sciortino F. The vanishing limit of the square-well fluid: the adhesive hard sphere model as a reference system. J Chem Phys. 2008;128:134513–134517.
  • Singh SK, Singh JK, Kwak SK, Deo G. Phase transition and crossover behavior of colloidal fluids under confinement. Chem Phys Lett. 2010;494:182–187.
  • Errington JR. Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation. J Chem Phys. 2003;118:9915–9925.
  • Ferrenberg AM, Swendsen RH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett. 1988;61:2635–2638.
  • Jana S, Singh JK, Kwak SK. Vapor–liquid critical and interfacial properties of square-well fluids in slit pores. J Chem Phys. 2009;130:214707–214701-214707-214708.
  • Singh SK, Singh JK. Effect of pore morphology on vapor–liquid phase transition and crossover behavior of critical properties from 3D to 2D. Fluid Phase Equilib. 2011;300:182–187.
  • Singh SK, Singh JK. A comparative study of critical temperature estimation of atomic fluid and chain molecules using fourth-order Binder cumulant and simplified scaling laws. Mol Simul. 2013;39:154–159.
  • Liu Y, Panagiotopoulos AZ, Debenedetti PG. Finite-size scaling study of the vapor–liquid critical properties of confined fluids: crossover from three dimensions to two dimensions. J Chem Phys. 2010;132:144107-144101–144107-144110.
  • Singh SK, Khan S, Jana S, Singh JK. Vapour-liquid phase equilibria of simple fluids confined in patterned slit pores. Mol Simul. 2011;37:350–360.
  • Fisher ME, Orkoulas G. The Yang-Yang anomaly in fluid criticality: experiment and scaling theory. Phys Rev Lett. 2000;85:696–699.
  • Kim YC, Fisher ME, Orkoulas G. Asymmetric fluid criticality. I. Scaling with pressure mixing. Phys Rev E. 2003;67:061506-061501–061506-061521.
  • Kim YC, Fisher ME. Asymmetric fluid criticality. II. Finite-size scaling for simulations. Phys Rev E. 2003;68:041506-041501–041506-041523.
  • Singh SK, Sinha A, Deo G, Singh JK. Vapor–liquid phase coexistence, critical properties, and surface tension of confined alkanes. J Phys Chem C. 2009;113:7170–7180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.