333
Views
3
CrossRef citations to date
0
Altmetric
Articles

New 1(2H)-phthalazinone derivatives as potent nonpeptidic HIV-1 protease inhibitors: molecular docking studies, molecular dynamics simulation, oral bioavailability and ADME prediction

, , &
Pages 628-641 | Received 11 Mar 2014, Accepted 25 Jun 2015, Published online: 14 Oct 2015

References

  • Sierra S, Kupfer B, Kaiser R. Basics of the virology of HIV-1 and its replication. J. Clin. Virol. 2005;34:233–244.10.1016/j.jcv.2005.09.004
  • Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J. Crystal structures of complexes of a peptidic inhibitor with wild-type and two mutant HIV-1 proteases. Biochemistry. 1996;35:10627–10633.10.1021/bi960481s
  • Weber IT. Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases. J. Biol. Chem. 1990;265:10492–10496.
  • Brik A, Wong CH. HIV-1 protease: mechanism and drug discovery. Org. Biomol. Chem. 2003;1:5–14.10.1039/b208248a
  • Mastrolorenzo A, Rusconi S, Scozzafava A, Barbaro G, Supuran CT. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr. Med. Chem. 2007;14:2734–2748.10.2174/092986707782360141
  • Kaplan AH, Zack JA, Knigge M, et al. Partial inhibition of the human immunodeficiency type 1 protease results in aberrant assembly and the formation of noninfectious particles. J. Virol. 1993;67:4050–4055.
  • Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1: december 2009. Top. HIV Med. 2009;17:138–145.
  • Baldwin ET, Bhat TN, Liu B, Pattabriaman N, Erickson JW. Structural basis of drug resistance for the V82A mutant of HIV-1 proteinase. Nat. Struct. Biol. 1995;2:244–249.10.1038/nsb0395-244
  • Ohtaka H, Schon A, Freire E. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Biochemistry. 2003;42:13659–13666.10.1021/bi0350405
  • Agniswamy J, Shen Ch-H, Aniana A, Sayer JM, Louis JM, Weber IT. HIV-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements. Biochemistry. 2012;51:2819–2828.10.1021/bi2018317
  • Ammaranonda P, Sanguansittianan S. Mechanism of HIV antiretroviral drugs progress toward drug resistance. Fundam. Clin. Pharmacol. 2012;26:146–161.10.1111/fcp.2011.26.issue-1
  • Louis JM, Zhang Y, Sayer JM, Wang Y-F, Harrison RW, Weber IT. The L76V drug resistance mutation decreases the dimer stability and rate of autoprocessing of HIV-1 protease by reducing internal hydrophobic contacts. Biochemistry. 2011;50:4786–4795.10.1021/bi200033z
  • Flausino OA Jr, Dufau L, Regasini LO, et al. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization. Curr. Med. Chem. 2012;19:4534–4540.10.2174/092986712803251557
  • Camarasa M-J, Velázquez S, San-Félix A, Pérez-Pérez M-J, Gago F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes? Antiviral Res. 2006;71:260–267.10.1016/j.antiviral.2006.05.021
  • Breccia P, Boggetto N, Pérez-Fernández R, et al. Dimerization Inhibitors of HIV-1 protease based on a bicyclic guanidinium subunit. J. Med. Chem. 2003;46:5196–5207.10.1021/jm030871u
  • Randolph JT, DeGoey DA. Peptidomimetic inhibitors of HIV protease. Curr. Top. Med. Chem. 2004;4:1079–1095.10.2174/1568026043388330
  • De Clercq E. The history of antiretrovirals: key discoveries over the past 25 years. Rev. Med. Virol. 2009;19:287–299.10.1002/rmv.v19:5
  • Qiu X, Liu Z-P. Recent developments of peptidomimetic HIV-1 protease inhibitors. Curr. Med. Chem. 2011;18:4513–4537.10.2174/092986711797287566
  • Luna B, Townsend MU. Tipranavir: the first nonpeptidic protease inhibitor for the treatment of protease resistance. Clin. Ther. 2007;29:2309–2318.10.1016/j.clinthera.2007.11.007
  • Poppe SM, Slade DE, Chong KT, et al. Antiviral activity of the dihydropyrone PNU-140690, a new nonpeptidic human immunodeficiency virus protease inhibitor. Antimicrob. Agents Chemother. 1997;41:1058–1063.
  • McCoy Ch. Darunavir: a nonpeptidic antiretroviral protease inhibitor. Clin. Ther. 2007;29:1559–1576.10.1016/j.clinthera.2007.08.016
  • Thaisrivongs S, Skulnick HI, Turner SR, et al. Structure-based design of HIV protease inhibitors: Sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitor. J. Med. Chem. 1996;39:4349–4353.10.1021/jm960541s
  • Jadhav PK, Ala P, Woerner FJ, et al. Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV. J. Med. Chem. 1997;40:181–191.10.1021/jm960586t
  • Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 2003;38:913–923.10.1016/j.ejmech.2003.09.005
  • Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. 1993;115:6506–6509.10.1021/ja00068a005
  • Sijbesma R, Srdanov G, Wudl F, et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J. Am. Chem. Soc. 1993;115:6510–6512.10.1021/ja00068a006
  • Cígler P, Kozísek M, Rezácová P, et al. From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. USA. 2005;102:15394–15399.10.1073/pnas.0507577102
  • Smoum R, Rubinstein A, Dembitsky VM, Srebnik M. Boron containing compounds as protease inhibitors. Chem. Rev. 2012;112:4156–4220.10.1021/cr608202m
  • Judd DA, Nettles JH, Nevins N, et al. Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J. Am. Chem. Soc. 2001;123:886–897.10.1021/ja001809e
  • Bernstein JA. Azelastine hydrochloride: a review of pharmacology, pharmacokinetics, clinical efficacy and tolerability. Curr. Med. Res. Opin. 2007;23:2441–2452.10.1185/030079907X226302
  • Slack RJ, Russell LJ, Hall DA, et al. Pharmacological characterization of GSK1004723, a novel, long-acting antagonist at histamine H1 and H3 receptors. Br. J. Pharmacol. 2011;164:1627–1641.10.1111/bph.2011.164.issue-6
  • Procopiou PA, Browning Ch, Buckley JM, et al. The discovery of phthalazinone-based human H1 and H3 single-ligand antagonists suitable for intranasal administration for the treatment of allergic rhinitis. J. Med. Chem. 2011;54:2183–2195.10.1021/jm1013874
  • Biswas K, Peterkin TAN, Bryan MC, et al. Discovery of potent, orally bioavailable phthalazinone bradykinin B1 receptor antagonists. J. Med. Chem. 2011;54:7232–7246.10.1021/jm200808v
  • del Olmo E, Barboza B, Ybarra MI, et al. Vasorelaxant activity of phthalazinones and related compounds. Bioorg. Med. Chem. Lett. 2006;16:2786–2790.10.1016/j.bmcl.2006.02.003
  • Strappaghetti G, Brodi Ch, Giannaccini G, Betti L. New 4-(4-methyl-phenyl)phthalazin-1(2H)-one derivatives and their effects on α1-receptors. Bioorg. Med. Chem. Lett. 2006;16:2575–2579.10.1016/j.bmcl.2006.02.068
  • Lepor H. The emerging role of alpha antagonists in the therapy of benign prostatic hyperplasia. J. Androl. 1991;12:389–394.
  • Prime ME, Courtney SM, Brookfield FA, et al. Phthalazinone pyrazoles as potent, selective, and orally bioavailable inhibitors of Aurora-A Kinase. J. Med. Chem. 2011;54:312–319.10.1021/jm101346r
  • Menear KA, Adcock C, Boulter R, et al. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(adp-ribose) polymerase-1. J. Med. Chem. 2008;51:6581–6591.10.1021/jm8001263
  • Loh VM Jr, Cockcroft X-l, Dillon KJ, et al. Phthalazinones. Part 1: the design and synthesis of a novel series of potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem. Lett. 2005;15:2235–2238.10.1016/j.bmcl.2005.03.026
  • X-L Cockcroft, Dillon KJ, Dixon L, et al. Phthalazinones 2: optimisation and synthesis of novel potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem. Lett. 2006;16:1040–1044.
  • Menear KA, Adcock C, Alonso FC, et al. Novel alkoxybenzamide inhibitors of poly(ADP-ribose) polymerase. Bioorg. Med. Chem. Lett. 2008;18:3942–3945.10.1016/j.bmcl.2008.06.025
  • Bedoya LM, Del Olmo E, Sancho R, et al. Anti-HIV activity of stilbene-related heterocyclic compounds. Bioorg. Med. Chem. Lett. 2006;16:4075–4079.10.1016/j.bmcl.2006.04.087
  • Li Y-X, Luo Y-P, Xi Z, Niu Z, He Y-Z, Yang G-F. Design and syntheses of novel phthalazin-1(2H)-one derivatives as acetohydroxyacid synthase inhibitors. J. Agric. Food. Chem. 2006;54:9135–9139.10.1021/jf061976j
  • Epsztajn J, Malinowski Z, Urbaniak P, Andrijewski G. A Practical approach for preparation of 2-[(dialkylamino)-methyl]-4-aryl-2H-phthalazin-1-ones via Mannich reaction of 4-aryl-2H-phthalazin-l-ones. Synth. Commun. 2005;35:179–192.10.1081/SCC-200048404
  • Pakulska W, Malinowski Z, Szczesniak AK, Czarnecka E, Epsztajn J. Synthesis and pharmacological evaluation of N-(dimethylamino)ethyl derivatives of benzo- and pyridopyridazinones. Arch. Pharm. Chem. Life Sci. 2009;342:41–47.10.1002/ardp.v342:1
  • Cortopassi WA, Cavalieri Feital RJ, de Jesus Medeiros D, Cuya Guizado TR, Costa França TC, Pimentel AS. Docking and molecular dynamics studies of new potential inhibitors of the human epidermal receptor 2. Mol. Simulat. 2012;38:1132–1142.10.1080/08927022.2012.696113
  • De Lucca GV. Synthesis and evaluation of delta lactams as nonpeptide HIV-protease inhibitors. Bioorg. Med. Chem. Lett. 1997;7:501–504.10.1016/S0960-894X(97)00007-3
  • Smith AB III, Cantin L-D, Pasternak A, et al. Design, synthesis, and biological evaluation of monopyrrolinone-based HIV-1 protease inhibitors. J. Med. Chem. 2003;46:1831–1844.10.1021/jm0204587
  • SYBYL-X 1.2, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA; 2010.
  • Clark M, Cramer RD III, Van Opdenbosch N. Validation of the general purpose tripos 5.2 force field. J. Comp. Chem. 1989;10:982–1012.10.1002/(ISSN)1096-987X
  • Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges. Tetrahedron. 1980;36:3219–3228.10.1016/0040-4020(80)80168-2
  • Hall HK Jr. Correlation of the base strengths of amines. J. Am. Chem. Soc. 1957;79:5441–5444.10.1021/ja01577a030
  • Lide DR, editor. CRC Handbook of Chemistry and Physics. 75th ed. Boca Raton: CRC Press Inc; 1994. p. 8–47.
  • Albert A, Barlin GB. 605. Ionization constants of heterocyclic substances. Part V. Mercapto-derivatives of diazines and benzodiazines. J. Chem. Soc. 1962;3129–3141. doi: 10.1039/jr9620003129
  • Reddy GS, Ali A, Nalam MN, et al. Design and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2′ ligands in pseudosymmetric dipeptide isosteres. J. Med. Chem. 2007;50:4316–4328.10.1021/jm070284z
  • Czodrowski P, Sotriffer ChA, Klebe G. Atypical protonation states in the active site of HIV-1 protease: a computational study. J. Chem. Inf. Model. 2007;47:1590–1598.10.1021/ci600522c
  • Harte WE, Beveridge DL. Prediction of the protonation states of the active site aspartyl residues in HIV-1 protease-inhibitor complexes via molecular dynamics simulation. J. Am. Chem. Soc. 1993;115:3883–3886.10.1021/ja00063a005
  • Ruppert J, Welch W, Jain AN. Automatic identification and representation of protein binding sites for molecular docking. Protein Sci. 1997;6:524–533.
  • Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 2003;46:499–511.10.1021/jm020406h
  • Jain AN. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J. Comput. Aided-Mol. Des. 1996;10:427–440.10.1007/BF00124474
  • Discovery Studio. San Diego:Release 3.0. Accelrys Software Inc.; 2010.
  • Torshin IY, Weber IT, Harrison RW. Geometric criteria of hydrogen bonds in proteins and identification of `bifurcated’ hydrogen bonds. Protein Eng. 2002;15:359–363.10.1093/protein/15.5.359
  • Stierand K, Rarey M. Drawing the PDB: protein−ligand complexes in two dimensions. ACS Med. Chem. Lett. 2010;1:540–545.10.1021/ml100164p
  • McGaughey GB, Gagnes M, Rappe AK. π-stacking interactions. Alive and well in proteins. J. Biol. Chem. 1998;273:15458–15463.10.1074/jbc.273.25.15458
  • Xu D, Tsai Ch-J, Nussinov R. Hydrogen bonds and salt bridges across protein–protein interfaces. Protein Eng. 1997;10:999–1012.10.1093/protein/10.9.999
  • Jakalian A, Bush BL, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 2000;21:132–146.10.1002/(SICI)1096-987X(20000130)21:2<>1.0.CO;2-6
  • Jakalian A, David BJ, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002;23:1623–1641.10.1002/jcc.10128
  • Wang J, Wang W, Kollmann PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modell. 2006;25:247–260.10.1016/j.jmgm.2005.12.005
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.10.1063/1.445869
  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725.10.1002/prot.v65:3
  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174.10.1002/(ISSN)1096-987X
  • Case DA, Darden TA, Cheatham TE III, et al. AMBER 11. San Francisco, USA: University of California; 2010.
  • Toukmaji A, Sagui C, Board J, Darden T. Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J. Chem. Phys. 2000;113:10913–10927.10.1063/1.1324708
  • Sagui C, Pedersen LG, Darden TA. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. J. Chem. Phys. 2004;120:73–87.10.1063/1.1630791
  • Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341.10.1016/0021-9991(77)90098-5
  • Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962.10.1002/(ISSN)1096-987X
  • Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013;9:3084–3095.10.1021/ct400341p
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera? a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612.10.1002/(ISSN)1096-987X
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000;33:889–897.10.1021/ar000033j
  • Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011;51:69–82.10.1021/ci100275a
  • Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 1994;98:1978–1988.10.1021/j100058a043
  • Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012;8:3314–3321.10.1021/ct300418h
  • Lipinski ChA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 2001;46:3–26.10.1016/S0169-409X(00)00129-0
  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623.10.1021/jm020017n
  • Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 1999;39:868–873.10.1021/ci990307l
  • Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000;43:3714–3717.10.1021/jm000942e
  • Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000;43:3867–3877.
  • Cheng A, Merz K Jr. Prediction of aqueous solubility of a diverse set of compounds using quantitative structure−property relationships. J. Med. Chem. 2003;46:3572–3580.10.1021/jm020266b
  • Egan WJ, Lauri G. Prediction of intestinal permeability. Adv. Drug Del. Rev. 2002;54:273–289.10.1016/S0169-409X(02)00004-2
  • Steiner T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002;41:48–76.10.1002/1521-3773(20020104)41:1<>1.0.CO;2-5
  • Ward MD. Charge-assisted hydrogen-bonded networks. Struct. Bond. 2009;132:1–23.
  • Specker E, Bottcher J, Brass S, et al. Unexpected novel binding mode of pyrrolidine-based aspartyl protease inhibitors: design, synthesis and crystal structure in complex with HIV protease. Chem. Med. Chem. 2006;1:106–117.10.1002/(ISSN)1860-7187
  • Huang M, Grant GH, Richards WG. Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. J. Mol. Graphics Modell. 2011;29:956–964.10.1016/j.jmgm.2011.04.002
  • Hornak V, Okur A, Rizzo RC, Simmerlin C. HIV-1 protease flaps spontaneously open and recluse in molecular dynamics simulations. Proc. Natl. Acad. Sci. USA. 2006;103:915–920.10.1073/pnas.0508452103
  • Ishima R, Freedberg DI, Wang YX, Louis JM, Torchia DA. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease. Structure. 1999;7:1047–1055.10.1016/S0969-2126(99)80172-5
  • Weber J, Mesters JR, Lepsík M, et al. Unusual binding mode of an HIV-1 protease inhibitor explains its potency against multi-drug-resistant virus strains. J. Mol. Biol. 2002;324:739–754.10.1016/S0022-2836(02)01139-7
  • Eberle J, Bechowsky B, Rose D, et al. Resistance of HIV type 1 to proteinase inhibitor Ro 31-8959. AIDS Res. Hum. Retroviruses. 1995;11:671–676.10.1089/aid.1995.11.671
  • Vaillancourt M, Irlbeck D, Smith T, Coombs RW, Swanstrom R. The HIV type 1 protease inhibitor saquinavir can select for multiple mutations that confer increasing resistance. AIDS Res. Hum. Retroviruses. 1999;15:355–363.10.1089/088922299311321
  • Mager PP. The active site of HIV-1 protease. Med. Res. Rev. 2001;21:348–353.10.1002/(ISSN)1098-1128
  • Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. 2002;41:2644–2676.10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O
  • Mertz EL, Krishtalik LI. Low dielectric response in enzyme active site. Proc. Natl. Acad. Sci. USA. 2000;97:2081–2086.10.1073/pnas.050316997
  • Muller N. Search for a realistic view of hydrophobic effects. Acc. Chem. Res. 1990;23:23–28.10.1021/ar00169a005
  • Williams DH, Stephens E, O’Brien DP, Zhou M. Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew. Chem. Int. Ed. 2004;43:6596–6616.10.1002/(ISSN)1521-3773
  • Rezac J, Riley KE, Hobza P. S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 2011;7:2427–2438.10.1021/ct2002946
  • Sayyed FB, Suresh ChH. Accurate prediction of cation−π interaction energy using substituent effects. J. Phys. Chem. A. 2012;116:5723–5732.10.1021/jp3034193
  • Tóth G, Borics A. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases. Biochemistry. 2006;45:6606–6614.10.1021/bi060188k
  • Blum A, Böttcher J, Heine A, Klebe G, Diederich WE. Structure-guided design of C2-symmetric HIV-1 protease inhibitors based on a pyrrolidine scaffold. J. Med. Chem. 2008;51:2078–2087.10.1021/jm701142s
  • Wright DW, Hall BA, Kenway OA, Jha S, Coveney PV. Computing clinically relevant binding free energies of HIV-1 protease inhibitors. J. Chem. Theory Comput. 2014;10:1228–1241.10.1021/ct4007037
  • Roe DR, Okur A, Wickstrom L, Hornak V, Simmerling C. Secondary structure bias in generalized born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicite solvation. J. Phys. Chem. B. 2007;111:1846–1857.10.1021/jp066831u
  • Okur A, Wickstrom L, Simmerling C. Evaluation of salt bridge structure and energetics in peptides using explicit, implicit, and hybrid solvation models. J. Chem. Theory Comput. 2008;4:488–498.10.1021/ct7002308
  • Amaro RE, Cheng XL, Ivanov I, Xu D, McCammon JA. Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. J. Am. Chem. Soc. 2009;131:4702–4709.10.1021/ja8085643
  • Wu TD, Schiffer CA, Gonzales MJ, et al. Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments. J. Virol. 2003;77:4836–4847.
  • Fasinu P, Pillay V, Ndesendo VMK, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 2011;32:185–209.10.1002/bdd.v32.4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.