209
Views
2
CrossRef citations to date
0
Altmetric
Special issue: Dedicated to Professor Ian K. Snook (1945–2013)

Hybrid Reverse Monte Carlo and electron phase contrast image simulations of amorphous silicon with and without paracrystals

, , &
Pages 522-530 | Received 01 Mar 2015, Accepted 25 Jun 2015, Published online: 26 Aug 2015

References

  • Anderson PW. Through the glass lightly. Science. 1995;267:1617–1617. doi:10.1126/science.267.5204.1617-b.
  • Howie A. Application of electron optical techniques to the study of amorphous materials. Phil Mag. 2010;90:4647–4660. doi:10.1080/14786431003636105.
  • Lichtenstein L, Heyde M, Freund H-J. Crystalline-vitreous interface in two dimensional silica. Phys Rev Lett. 2012;109:106101–106105. doi:10.1103/PhysRevLett.109.106101.
  • Huang PY, Kurasch S, Srivastava A, Skakalova V, Kotakoski J, Krasheninnikov AV, Hovden R, Mao Q, Meyer JC, Smet J, Muller DA, Kaiser U. Direct imaging of a two-dimensional silica glass on graphene. Nano Lett. 2012;12:1081–1086  doi:10.1021/nl204423x.
  • Huang PY, Kurasch SA, Alden JS, Shekhawat A, Alemi AA, McEuen PL, Sethna JP, Kaiser U, Muller DA. Imaging atomic rearrangements in two-dimensional silica glass: watching silica's dance. Science. 2013;342:224–227. doi:10.1126/science.1242248.
  • Zachariasen WH. The atomic arrangement in glass. J Am Chem Soc. 1932;54:3841–3851. doi:10.1021/ja01349a006.
  • Kelly TF, Larson DJ. Atom probe tomography 2012. Annu Rev Mater Res. 2012;42:1–31. doi:10.1146/annurev-matsci-070511-155007.
  • Haley D, Petersen TC, Barton G, Ringer SP. Influence of field evaporation on radial distribution functions in Atom Probe Tomography. Phil Mag. 2009;89:925–943. doi:10.1080/14786430902821610.
  • Gaskell PH, Saeed A, Chieux P, McKenzie DR. Neutron-scattering studies of the structure of highly tetrahedral amorphous diamondlike carbon. Phys Rev Lett. 1991;67:1286–1289. doi:10.1103/PhysRevLett.67.1286.
  • Kugler S, Pusztai L, Rosta L, Chieux P, Bellissent R. Structure of evaporated pure amorphous silicon: neutron-diffraction and reverse Monte Carlo investigations. Phys Rev B. 1993;48:7685–7688. doi:10.1103/PhysRevB.48.7685.
  • Burian A, Ratuszna A, Dore JC, Howells SW. Radial distribution function analysis of the structure of activated carbons. Carbon. 1998;36:1613–1621. doi:10.1016/S0008-6223(98)00131-6.
  • Laaziri K, Kycia S, Roorda S, Chicoine M, Robertson JL, Wang J, Moss SC. High-energy X-ray diffraction study of pure amorphous silicon. Phys Rev B. 1999;60:13520–13533. doi:10.1103/PhysRevB.60.13520.
  • Laaziri K, Kycia S, Roorda S, Chicoine M, Robertson JL, Wang J, Moss SC. High resolution radial distribution function of pure amorphous silicon. Phys Rev Lett. 1999;82:3460–3463. doi:10.1103/PhysRevLett.82.3460.
  • Cockayne DJH, McKenzie DR. Electron-diffraction analysis of polycrystalline and amorphous thin-films. Acta Crystallogr Sect A. 1988;44:870–878.
  • Cockayne DJH. The study of nanovolumes of amorphous materials using electron scattering. Ann Rev Mater Res. 2007;37:159–187. doi:10.1146/annurev.matsci.35.082803.103337.
  • Roorda S, Doorn S, Sinke WC, Scholte PMLO, van Loenen E. Calorimetric evidence for structural relaxation in amorphous silicon. Phys Rev Lett. 1989;62:1880–1883. doi:10.1103/PhysRevLett.62.1880.
  • Treacy MMJ, Gibson JM, Fan L, Paterson DJ, McNulty I. Fluctuation microscopy: a probe of medium range order. Rep Prog Phys. 2005;68:2899–2944. doi:10.1088/0034-4885/68/12/R06.
  • Cowley JM. Electron nanodiffraction methods for measuring medium-range order. Ultramicroscopy. 2002;90:197–206. doi:10.1016/S0304-3991(01)00130-9.
  • Scott GD, Knight KR, Bernal JD, Mason JS. Radial distribution of the random close packing of equal spheres. Nature. 1962;194:956–957. doi:10.1038/194956a0.
  • McGreevy RL, Pusztai L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Simul. 1988;1:359–367. doi:10.1080/08927028808080958.
  • Keen DA, McGreevy RL. Structural modelling of glasses using reverse Monte Carlo simulation. Nature. 1990;344:423–425. doi:10.1038/344423a0.
  • Pusztai L, McGreevy RL. MCGR: An inverse method for deriving the pair correlation function from the structure factor. Physica B. 1997;234-236:357–358. doi:10.1016/S0921-4526(96)00986-6.
  • Soper AK. Empirical potential Monte Carlo simulation of fluid structure. Chem Phys. 1996;202:295–306. doi:10.1016/0301-0104(95)00357-6.
  • Soper AK. Computer simulation as a tool for the interpretation of total scattering data from glasses and liquids. Mol Simul. 2012;38:1171–1185. doi:10.1080/08927022.2012.732222.
  • Evrard G, Pusztai L. Reverse Monte Carlo modelling of the structure of disordered materials with RMC++: a new implementation of the algorithm in C++. J Phys Condens Matter. 2005;17:S1–S13. doi:10.1088/0953-8984/17/5/001.
  • Lyubartsev AP, Laaksonen A. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E. 1995;52:3730–3737. doi:10.1103/PhysRevE.52.3730.
  • O'Malley B, Snook I, McCulloch DG. Reverse Monte Carlo analysis of the structure of glassy carbon using electron-microscopy data. Phys Rev B. 1998;57:14148–14157. doi:10.1103/PhysRevB.57.14148.
  • Kugler S, Várallyay Z. Possible unusual atomic arrangements in the structure of amorphous silicon. Philos Mag Lett. 2001;81:569–574. doi:10.1080/09500830110055355.
  • Opletal G, Petersen TC, O'Malley B, Snook I, McCulloch DG, Marks NA, Yarovsky I. Hybrid approach for generating realistic amorphous carbon structure using Metropolis and reverse Monte Carlo. Mol Simul. 2002;28:927–938. doi:10.1080/089270204000002584.
  • Petersen TC, Yarovsky I, Snook I, McCulloch DG, Opletal G. Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm. Carbon. 2003;41:2403–2411. doi:10.1016/S0008-6223(03)00296-3.
  • Biswas P, Atta-Fynn R, Drabold DA. Reverse Monte Carlo modeling of amorphous silicon. Phys Rev B. 2004;69:195207–195205. doi:10.1103/PhysRevB.69.195207.
  • Borisenko KB, Haberl B, Liu ACY, Chen Y, Li G, Williams JS, Bradby JE, Cockayne DJ, Treacy MMJ. Medium-range order in amorphous silicon investigated by constrained structural relaxation of two-body and fourbody electron diffraction data. Acta Mater. 2012;60:359–375. doi:10.1016/j.actamat.2011.09.039.
  • Biswas P, Atta-Fynn R, Chakraborty S, Drabold DA. Real space information from fluctuation electron microscopy: applications to amorphous silicon. J Phys Condens Matter. 2007;19:455202–455210. doi:10.1088/0953-8984/19/45/455202.
  • Treacy MMJ, Borisenko KB. The local structure of amorphous silicon. Science. 2012;335:950–953. doi:10.1126/science.1214780.
  • Roorda S, Lewis LJ. Comment on ‘the local structure of amorphous silicon’. Science. 2012;338:1539–1539. doi:10.1126/science.1221738.
  • Treacy MMJ, Borisenko KB. Response to comment on ‘the local structure of amorphous silicon’. Science. 2012;338:1539–1539. doi:10.1126/science.1222571.
  • Opletal G, Petersen TC, Russo SP. HRMC_2.1: Hybrid Reverse Monte Carlo method with silicon, carbon, germanium and silicon carbide potentials. Comput Phys Commun. 2014;185:1854–1855. doi:10.1016/j.cpc.2014.02.025.
  • Gorecki A, Liu ACY, Petersen TC. High-resolution radial distribution function of pure ion-implanted amorphous silicon measured using tilted-illumination selected-area electron diffraction. Microsc Microanal. 2014;20:50–54. doi:10.1017/S1431927613013779.
  • Vink RLC, Barkema GT, van der Weg WF, Mousseau N. Fitting the Stillinger-Weber potential to amorphous silicon. J Non-Cryst Solids. 2001;282:248–255. doi:10.1016/S0022-3093(01)00342-8.
  • McBride WE, McKenzie DR, McCulloch DG, Cockayne DJH, Petersen TC. Dark field microscopy for diffraction analysis of amorphous carbon solids. J Non-Cryst Solids. 2005;351:413–417. doi:10.1016/j.jnoncrysol.2004.12.002.
  • Dash RK, Voyles PM, Gibson JM, Treacy MMJ, Keblinski P. A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs. J Phys Condens Matter. 2003;15:S2425–S2435. doi:10.1088/0953-8984/15/31/317.
  • Cowley JM, Moodie AF. The scattering of electrons by atoms and crystals. 1. A new theoretical approach. Acta Crystallogr. 1957;10:609–619.
  • Gómez-Rodríguez A, Beltrán-del-Río LM, Herrera-Becerra R. SimulaTEM: Multislice simulations for general objects. Ultramicroscopy. 2010;110:95–104.
  • Opletal G, Petersen TC, Snook I, Russo SP. HRMC_2.0: Hybrid Reverse Monte Carlo method with silicon, carbon and germanium potentials. Comput Phys Commun. 2013;184:1946–1957. doi:10.1016/j.cpc.2013.03.004.
  • Treacy JM, Gibson MMJ, Keblinski P. Paracrystallites found in evaporated amorphous tetrahedral semiconductors. J Non-Cryst Solids. 1998;231:99–110. doi:10.1016/S0022-3093(98)00371-8.
  • Mitchell DRG, Schaffer B. Scripting-customised microscopy tools for Digital Micrograph™. Ultramicroscopy. 2005;103:319–332. doi:10.1016/j.ultramic.2005.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.