172
Views
6
CrossRef citations to date
0
Altmetric
Special issue: Dedicated to Professor Ian K. Snook (1945–2013)

The ensemble switch method and related approaches to obtain interfacial free energies between coexisting phases from simulations: a brief review

, &
Pages 549-562 | Received 02 Mar 2015, Accepted 08 Jul 2015, Published online: 21 Sep 2015

References

  • Rowlinson JS, Widom B. Molecular theory of capillarity. Oxford: Oxford Univ. Press; 1982.
  • Kashchiev D. Nucleation: basic theory and applications. Oxford: Butterworth-Heinemann; 2000.
  • de Gennes PG, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Berlin: Springer; 2003.
  • Puri S, Wadhavan V, editors. Kinetics of Phase Transitions. Boca Raton, FL: CRC Press; 2009.
  • Desai RC, Kapral R. Dynamics of self-organized and self-assembled structures. Cambridge: Cambridge Univ. Press Cambridge; 2009.
  • Cahn JW, Hilliard JF. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys. 1958;28(2):258–267. doi:10.1063/1.1744102.
  • Evans R. The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys. 1979;28(2):143–200. doi:10.1080/00018737900101365.
  • Jasnow D. Critical phenomena at interfaces. Rep Progr Phys. 1984;47(9):1059–1132. doi:10.1088/0034-4885/47/9/001.
  • Binder K. Theory of first-order phase transitions. Rep Progr Phys. 1987;50(7):783–859. doi:10.1088/0034-4885/50/7/001.
  • Binder K, Block BJ, Virnau P, Tröster A. Beyond the van der Waals loop: what can be learned from simulating Lennard-Jones fluids inside the region of phase coexistence. Am J Phys. 2012;80(12):1099–1109. doi:10.1119/1.4754020.
  • Statt A, Virnau P, Binder K. Mol Phys. 2015 (in press) 10.1080/00268976.2015.1042937.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Clarendon Press; 1987.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithm to applications. San Diego: Academic Press; 2002.
  • Rapaport DC. The art of molecular dynamics simulation. Cambridge: Cambridge Univ. Press; 2004.
  • Snook I. The Langevin and Generalized Langevin approach to the dynamics of atomic, polymeric and colloidal system. Amsterdam: Elsevier; 2007.
  • Landau DP, Binder K. A guide to Monte Carlo simulations in statistical physics. Cambridge: Cambridge Univ. Press; 2015.
  • Walton JPRBJ, Tildesley DJD, Rowlinson JSJ, Henderson JRJ, Walton JPRB, Tildesley DJ, Rowlinson JS. The pressure tensor at the planar surface of a liquid. Mol Phys. 1983;48(6):1357–1368. doi:10.1080/00268978300100971.
  • Nijmeijer MJP, Bakker AF, Bruin C, Sikkenk JM. A molecular dynamics simulation of the Lennard-Jones liquid–vapor interface. J Chem Phys. 1988;89(6):3789–3792. doi:10.1063/1.454902.
  • Binder K. Phase transitions in polymer blends and block copolymer melts – some recent developments. Adv Polym Sci. 1994;112:181–299.
  • Müller M, Binder K. Computer-simulation of asymmetric polymer mixtures. 1995;28:1825–1834.
  • Hansen JP, McDonald IR. Theory of simple liquids. London: Academic Press; 1986.
  • Deb D, Wilms D, Winkler A, Virnau P, Binder K. Methods to compute pressure and wall tension in fluids containing hard particles. Int J Mod Phys C. 2012;23(8):1240011. doi:10.1142/S0129183112400116.
  • Binder K. Monte carlo calculation of the surface tension for two- and three-dimensional lattice-gas models. Phys Rev A. 1982;25(3):1699–1709. doi:10.1103/PhysRevA.25.1699.
  • Potoff I, Panagiotopoulos A. Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations. J Chem Phys. 2000;112(14):6411–6415. doi:10.1063/1.481204.
  • Vink RLC, Horbach J. Critical behaviour and interfacial fluctuations in a phase-separating model colloid-polymer mixture: grand canonical Monte Carlo simulations. J Phys Condens Matter. 2004;16(38):3807–3820. doi:10.1088/0953-8984/16/38/003.
  • Vink RLC, Schilling T. Interfacial tension of the isotropic-nematic interface in suspensions of soft spherocylinders. Phys Rev E. 2005;71(5):051716. doi:10.1103/PhysRevE.71.051716.
  • Mognetti BM, Virnau P, Yelash L, Paul W, Binder K, Müller M, Macdowell LG. Coarse-grained models for fluids and their mixtures: comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment. J Chem Phys. 2009;130(4):044101. doi:10.1063/1.3050353.
  • Limmer D, Chandler D. The putative liquid–liquid transition is a liquid–solid transition in atomistic models of water. J Chem Phys. 2011;135(13):134503. doi:10.1063/1.3643333.
  • Schmitz F, Virnau P, Binder K. Determination of the origin and magnitude of logarithmic finite-size effects on interfacial tension: role of interfacial fluctuations and domain breathing. Phys Rev Lett. 2014;112(12):125701. doi:10.1103/PhysRevLett.112.125701.
  • Schmitz F, Virnau P, Binder K. Logarithmic finite-size effects on interfacial free energies: Phenomenological theory and Monte Carlo studies. Phys Rev E. 2014;90(1):012128. doi:10.1103/PhysRevE.90.012128.
  • Schmitz F, Virnau P. The ensemble switch method for computing interfacial tensions. J Chem Phys. 2015;142(14):144108. doi:10.1063/1.4916317.
  • Schmitz F. Dissertation. unpublished. Mainz: Johannes Gutenberg Universität; 2014.
  • Chipot CHR, Pohorille A, editors. Free energy calculations. Theory and applications in chemistry and biology. Berlin: Springer; 2007.
  • Virnau P, Müller M. Calculation of free energy through successive umbrella sampling. J Chem Phys. 2004;120(23):10925. doi:10.1063/1.1739216.
  • Wang F, Landau DP. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64(5):056101. doi:10.1103/PhysRevE.64.056101.
  • Errington JK. Evaluating surface tension using grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling. Phys Rev E. 2003;67(1):012102-1–012102-4. doi:10.1103/PhysRevE.67.012102.
  • Werner A, Schmid F, Müller M, Binder K. “Intrinsic” profiles and capillary waves at homopolymer interfaces: A Monte Carlo study. Phys Rev E. 1999;59(1):728–738. doi:10.1103/PhysRevE.59.728.
  • Hoyt JJ, Asta M, Karma A. Method for computing the anisotropy of the solid–liquid interfacial free energy. Phys Rev Lett. 2001;86(24):5530–5533. doi:10.1103/PhysRevLett.86.5530.
  • Asta M, Hoyt JJ, Karma A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys Rev B. 2002;66(10):100101. doi:10.1103/PhysRevB.66.100101.
  • Morris JR. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys Rev B. 2002;66(14):144104. doi:10.1103/PhysRevB.66.144104.
  • Sun DY, Asta M, Hoyt JJ. Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe. Phys Rev B. 2004;69(17):174103. doi:10.1103/PhysRevB.69.174103.
  • Vink RLC, Horbach J, Binder K. Capillary waves in a colloid-polymer interface. J Chem Phys. 2005;122(13):134905. doi:10.1063/1.1866072.
  • Wolfsheimer S, Tanase C, Shundyak K, van Roi R, Schilling T. Isotropic-nematic interface in suspensions of hard rods: Mean-field properties and capillary waves. Phys Rev E. 2006;73(6):061703. doi:10.1103/PhysRevE.73.061703.
  • Rozas RE, Horbach J. Capillary wave analysis of rough solid–liquid interfaces in nickel. EPL. 2011;93(2):26006. doi:10.1209/0295-5075/93/26006.
  • Fisher MPA, Fisher DS, Weeks JD. Agreement of capillary-wave theory with exact results for the interface profile of the two-dimensional ising model. Phys Rev Lett. 1982;48(5):368–368. doi:10.1103/PhysRevLett.48.368.
  • Davidchack RL, Laird BB. Direct calculation of the hard-sphere crystal/melt interfacial free energy. Phys. Rev. Lett. 2000;85:4751–4754.
  • Davidchack RL, Laird BB. Crystal structure and interaction dependence of the crystal-melt interfacial free energy. Phys Rev Lett. 2005;94(8):086102. doi:10.1103/PhysRevLett.94.086102.
  • Davidchack RL. Hard spheres revisited: Accurate calculation of the solid–liquid interfacial free energy. J Chem Phys. 2010;133(23):234701. doi:10.1063/1.3514144.
  • Broughton JQ, Gilmer GH. Molecular dynamics investigation of the crystal–fluid interface. Vi. Excess surface free energies of crystal–liquid systems. J Chem Phys. 1986;84(10):5759–5768. doi:10.1063/1.449884.
  • Binder K, Kalos MH. Critical clusters in a supersaturated vapor-theory and monte-carlo clusters in a supersaturated vapor – theory and Monte-Carlo simulation. J Stat Phys. 1980;22(3):363–396. doi:10.1007/BF01014648.
  • Biskup M, Chayes L, Kotecký R. On the formation/dissolution of equilibrium droplets. Europhys Lett. 2002;60(1):21–27. doi:10.1209/epl/i2002-00312-y.
  • Binder K. Theory of the evaporation/condensation transition of equilibrium droplets in finite volumes. Physica A. 2003;319:99–114. doi:10.1016/S0378-4371(02)01581-9.
  • MacDowell LG, Virnau P, Müller M, Binder K. The evaporation/condensation transition of liquid droplets. J Chem Phys. 2004;120(11):5293–5308. doi:10.1063/1.1645784.
  • MacDowell LG, Shen VK, Errington JR. Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems. J Chem Phys. 2006;125(3):034705. doi:10.1063/1.2218845.
  • Schrader M, Virnau P, Binder K. Simulation of vapor–liquid coexistence in finite volumes: a method to compute the surface free energy of droplets. Phys Rev E. 2009;79(6):061104. doi:10.1103/PhysRevE.79.061104.
  • Neuhaus T, Hager JS. 2D crystal shapes, droplet condensation, and exponential slowing down in simulations of first-order phase transitions. J Stat Phys. 2003;113(1/2):47–83. doi:10.1023/A:1025718703965.
  • Borgs C, Kotecký R. A rigorous theory of finite-size scaling at first-order phase transitions. J Stat Phys. 1990;61(1-2):79–119. doi:10.1007/BF01013955.
  • Block JB, Das SK, Oettel M, Virnau P, Binder K. Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study. J Chem Phys. 2010;133(15):154702. doi:10.1063/1.3493464.
  • Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. Phys Rev B. 1983;28(2):784–805. doi:10.1103/PhysRevB.28.784.
  • Statt A, Virnau P, Binder K. Finite-size effects on liquid-solid phase coexistence and the estimation of crystal nucleation barriers. Phys Rev Lett. 2015;114(2):026101. doi:10.1103/PhysRevLett.114.026101.
  • Onsager L, Crystal Statistics I. A Two-Dimensional Model with an Order-Disorder Transition. Phys Rev Lett. 1944;65:117.
  • Berg BA, Hansmann U, Neuhaus T. Properties of interfaces in the 2- and 3-dimensional Ising model. Z Phys B Condens Matt. 1993;90(2):229–239. doi:10.1007/BF02198159.
  • Asakura K, Oosawa F. Interaction between particles suspended in solutions of macromolecules. Journal of Polymer Science. 1958;33(126):183–192. doi:10.1002/pol.1958.1203312618.
  • Binder K, Virnau P, Statt A. Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior. J Chem Phys. 2014;141(14):140901. doi:10.1063/1.4896943.
  • Zykova-Timan T, Horbach J, Binder K. Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures. J Chem Phys. 2010;133(1):014705. doi:10.1063/1.3455504.
  • Pedersen UR. Direct calculation of the solid-liquid Gibbs free energy difference in a single equilibrium simulation. J Chem Phys. 2013;139(10):104102. doi:10.1063/1.4818747.
  • Gelfand MP, Fisher ME. Finite-size effects in surface tension: thermodynamics and the gaussian interface model. Int J Thermophys. 1988;9(5):713–727. doi:10.1007/BF00503238.
  • Gelfand MP, Fisher ME. Finite-Size Effects in Fluid Interfaces. Physica A. 1990;166(1):1–74. doi:10.1016/0378-4371(90)90099-E.
  • Chen LJ. Area dependence of the surface tension of a lennard-jones fluid from molecular dynamics simulations. J Chem Phys. 1995;103(23):10214–10216. doi:10.1063/1.469924.
  • Singh JK, Kofke DA, Errington JR. Surface tension and vapor-liquid phase coexistence of the square-well fluid. J Chem Phys. 2003;119(6):3405–3412. doi:10.1063/1.1590313.
  • MacDowell LG, Bryk P. Direct calculation of interfacial tensions from computer simulation: Results for freely jointed tangent hard sphere chains. Phys Rev E. 2007;75(6):061609. doi:10.1103/PhysRevE.75.061609.
  • Espinosa JR, Vega C, Sanz E. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations. J Chem Phys. 2014;141(13):134709. doi:10.1063/1.4896621.
  • Santra M, Chakrabarty S, Bagchi B. Gas-liquid nucleation in a two dimensional system. J Chem Phys. 2008;129(23):234704. doi:10.1063/1.3037241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.