262
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effects of grain boundary structure on lithium transport in graphite

, &
Pages 1356-1363 | Received 16 Sep 2015, Accepted 25 Oct 2015, Published online: 17 Aug 2016

References

  • Awano H, Brodd RJ, Cho J, et al. Lithium-ion batteries. New York (NY): Springer; 2009.
  • Persson K, Sethuraman VA, Hardwick LJ, et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 2;2010:1176-1180.
  • Takami N, Satoh A, Hara M, et al. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 1995;142:371–378.
  • Yu P, Popov BN, Ritter JA, et al. Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc. 1999;146:8–14.
  • Harris SJ, Timmons A, Baker DR, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes. Chem. Phys. Lett. 2010;485:265–274.
  • Hazarati E, de Wijs GA, Brocks G. Li intercalation in graphite: a van der Waals density-functional study. Phys. Rev. B. 2014;90:155448-1-155448-11.
  • Toyoura K, Koyama Y, Kuwabara A, et al. First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound. Phys. Rev. B. 2008;78:214303-1-214303-12.
  • Verbrugge MW, Koch BJ. Electrochemical analysis of lithiated graphite anodes. J. Electrochem. Soc. 2003;150:A374–A384.
  • Mandeltort L, Yates JT Jr. Rapid atomic Li surface diffusion and intercalation on graphite: a surface science study. J. Phys. Chem. C. 2012;116:24962–24967.
  • Ganesh P, Kim J, Park C, et al. Binding and diffusion of lithium in graphite: quantum monte carlo benchmarks and validation of van der Waals density functional methods. J. Chem. Theory Comput. 2014;10:5318–5323.
  • Sonia FJ, Ananthoju B, Jangid M, et al. Insight into the mechanical integrity of few-layers graphene upon lithiation/delithiation via in situ monitoring of stress development. Carbon. 88;2015:206-214.
  • Wang XL, An K, Cai L, et al. Visualizing the chemistry and structure dynamics in lithium--ion batteries by in-situ neutron diffraction. Sci. Rep. 2010;2:1-7.
  • Kobayashi R, Ohba N, Tamura T, et al. A Monte Carlo study of host-material deformation effect on Li migration in graphite. J. Phys. Soc. Jpn. 2013;82:094603-1-094603-8.
  • Ohba N, Ogata S, Tamura T, et al. Enhanced thermal diffusion of Li in graphite by alternating vertical electric field: a hybrid quantum-classical simulation study. J. Phys. Soc. Jpn. 2012;81:1–4.
  • Qi Y, Guo H, Hector LG Jr., et al. Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 2010;157:A558–A566.
  • Sethuraman VA, Hardwick LJ, Srinivasan V, et al. Surface structural disordering in graphite upon lihtium intercalation/deintercalation. J. Power Sources. 2010;195:3655–3660.
  • Magerl A, Zabel H, Anderson IS. In-plane jump diffusion of Li in LiC6. Phys. Rev. Lett. 1985;55:222–225.
  • Shumeyko CM, Webb EB III. A molecular dynamics study of lithium grain boundary intercalation in graphite. Scr. Mater. 2015;102:43–46.
  • Olmsted DL, Foiles SM, Holm EA. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009;57:3694–3703.
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000;112:6472–6486.
  • Persson K, Hinuma Y, Meng YS, et al. Thermodynamic and kinetic properties of the Li-graphite system from first-principle calculations. Phys. Rev. B. 2010;82:125416-1-125416-9.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19.
  • Liu TH, Gajewski G, Pao CW, et al. Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations. Carbon. 2011;49:2306–2317.
  • Chakraborti N, Das S, Jayakanth R, et al. Genetic Algorithms Applied to Li+ ions contained in carbon nanotubes: an investigation using particle swarm optimization and differential evolution along with molecular dynamics. Mater. Manuf. Processes. 2007;22:562–569.
  • Chakraborti N, Jayakanth R, Das S, et al. Evolutionary and genetic algorithms applied to a Li-C system: calculations using differential evolution and particle swarm algorithm. J. Phase Equilib. Diffus. 2007;28:140–149.
  • Ohba N, Ogata S, Tamura T, et al. A hybrid quantum-classical simulation study on stress-dependence of Li diffusivity in graphite. Compu. Model. Eng. Sci. 2011;75:247–264.
  • Aaron HB, Bolling GF. Free volume as a guide to grain boundary phenomena. Scr. Metall. 1972;6:553–562.
  • Tschopp MA, Tucker GJ, McDowell DL. Structure and free volume of <1 1 0> symmetric tilt grain boundaries with the e structural unit. Acta Mater. 2007;55:3959–3969.
  • Tucker GJ, McDowell DL. Non-equilibrium grain boundary structure and inelastric deformation using atomistic simulations. Int. J. Plast. 27;2011:841-857.
  • Tucker GJ, Tschopp MA, McDowell DL. Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater. 2010;58:6464–6473.
  • Sorensen MR, Mishin Y, Voter AF. Diffusion mechanisms in Cu grain boundaries. Phys. Rev. B. 2000;62:3658–3673.
  • Whipple RTP. Concentration contours in grain boundary diffusion. Philos. Mag. 1954;138:1225–1236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.