1,335
Views
81
CrossRef citations to date
0
Altmetric
Articles

QM/MM free energy simulations: recent progress and challenges

, , , , &
Pages 1056-1078 | Received 18 Nov 2015, Accepted 07 Dec 2015, Published online: 05 Jul 2016

References

  • Pauling L. The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. 3rd ed. Ithaca (NY): Cornell University Press; 1960.
  • McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature. 1977;267:585–590.
  • Warshel A, Levitt M. Theoretical studies of enzymic reactions -- dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J. Mol. Biol. 1976;103:227–249.
  • Field MJ, Bash PA, Karplus M. A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J. Comput. Chem. 1990;11:700–733.
  • Lipkowitz KB, Boyd DB, editors. J. Gao, in reviews in computational chemistry VII. New York: VCH; 1995.
  • Vreven T, Morokuma K. On the application of the IMOMO (integrated molecular orbital plus molecular orbital) method. J. Comput. Chem. 2000;21:1419–1432.
  • Friesner RA, Guallar V. Ab intio QM and QM/MM methods for studying enzyme catalysis. Annu. Rev. Phys. Chem. 2005;56:389–427.
  • Gao JL, Ma SH, Major DT, et al. Mechanisms and free energies of enzymatic reactions. Chem. Rev. 2006;106:3188–3209.
  • Riccardi D, Schaefer P, Yang Y, et al. Feature article: development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. J. Phys. Chem. B. 2006;110:6458–6469.
  • Zhang YK. Pseudobond ab initio QM/MM approach and its applications to enzyme reactions. Theor. Chem. Acc. 2006;116:43–50.
  • Hu H, Yang WT. Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods. Annu. Rev. Phys. Chem. 2008;59:573–601.
  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 2009;48:1198–1229.
  • Kamerlin SCL, Haranczyk M, Warshel A. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pK(a), redox reactions and solvation free energies. J. Phys. Chem. B. 2009;113:1253–1272.
  • Brunk E, Rothlisberger U. Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem. Rev. 2015;115:6217–6263.
  • Gao JL, Truhlar DG. Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 2002;53:467–505.
  • Monard G, Merz KM. Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc. Chem. Res. 1999;32:904–911.
  • Shaik S, Cohen S, Wang Y, et al. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM Calculations. Chem. Rev. 2010;110:949–1017.
  • Garcia-Viloca M, Gao J, Karplus M, et al. How enzymes work: analysis by modern rate theory and computer simulations. Science 2004;303:186–195.
  • Nashine VC, Hammes-Schiffer S, Benkovic SJ. Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 2010;14:644–651.
  • van der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry. 2013;52:2708–2728.
  • Lonsdale R, Mulholland AJ. QM/MM modelling of drug-metabolizing enzymes. Curr. Top. Med. Chem. 2014;14:1339–1347.
  • Reetz MT, Puls M, Carballeira JD, et al. Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. ChemBioChem. 2007;8:106–112.
  • Fruschicheva MP, Mills MJL, Schopf P, et al. Computer aided enzyme design and catalytic concepts. Curr. Opin. Chem. Biol. 2014;21:56–62.
  • Wietek J, Wiegert JS, Adeishvili N, et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 2014;344:409–412.
  • Kraut DA, Carroll KS, Herschlag D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 2003;72:517–571.
  • Zalatan JG, Herschlag D. The far reaches of enzymology. Nat. Chem. Biol. 2009;5:516–520.
  • Fersht A. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: W.H. Freeman and Company; 1999.
  • Deng YQ, Roux B. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B. 2009;113:2234–2246.
  • Sweeney HL, Houdusse A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 2010;39:539–557.
  • Yang Y, Yu H, Cui Q. Extensive conformational changes are required to turn on ATP hydrolysis in myosin. J. Mol. Biol. 2008;381:1407–1420.
  • Song CX, He C. Potential functional roles of DNA demethylation intermediates. Trends Biochem. Sci. 2013;38:480–484.
  • Yi C, Jia G, Hou G, et al. Iron-catalyzed oxidation intermediates captured in a DNA repair monooxygenase. Nature 2010;468:330–333.
  • Nabel CS, Kohli RM. Demystifying DNA demethylation. Science 2011;333:1229–1230.
  • Kaila VR, Verkhovsky MV, Wikström M. Proton-coupled electron transfer in cytochrome c oxidase. Chem. Rev. 2010;110:7062–7081.
  • Goyal P, Lu J, Yang S, et al. Changing hydration level in an internal cavity modulates the proton affinity of a key glutamate in cytochrome c oxidase. Proc. Natl. Acad. Sci. USA. 2013;110:18886–18891.
  • Goyal P, Yang S, Cui Q. Microscopic basis for kinetic gating in cytochrome c oxidase: insights from QM/MM analysis. Chem. Sci. 2015;6:826–841.
  • Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr. Opin. Chem. Biol. 2006;10:498–508.
  • Lassila JK, Zalatan JG, Herschlag D. Biological phosphoryl transfer reactions: understanding mechanism and catalysis. Annu. Rev. Biochem. 2011;80:669–702.
  • Babtie AC, Bandyopadhyay S, Olguin LF, et al. Efficient catalytic promiscuity for chemically distinct reactions. Angew. Chem. Int. Ed. 2009;48:3692–3694.
  • Hou GH, Cui Q. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase (NPP) slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. J. Am. Chem. Soc. 2012;134:229–246.
  • Hou GH, Cui Q. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily. J. Am. Chem. Soc. 2013;135:10457–10469.
  • Duarte F, Amrein BA, Kamerlin SCL. Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys. Chem. Chem. Phys. 2013;15:11160–11177.
  • Kosugi T, Hayashi S. QM/MM reweighting free energy SCF for geometry optimization on extensive free energ surface of enzymatic reaction. J. Chem. Theory Comput. 2012;8:322–334.
  • Rod TH, Ryde U. Accurate QM/MM free energy calculations of enzyme reactions: methylation by catechol o-methyltransferase. J. Chem. Theory Comput. 2005;1:1240–1251.
  • Cui Q, Karplus M. QM/MM studies of the triosephosphate isomerase (TIM) catalyzed reactions: the effect of geometry and tunneling on proton transfer rate constants. J. Am. Chem. Soc. 2002;124:3093–3124.
  • Nam K, Cui Q, Gao J, et al. A specific reaction parameterization for the AM1/d hamiltonian for transphosphorylation reactions. J. Chem. Theory Comput. 2007;3:486–504.
  • Yang Y, Yu H, York D, et al. Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory 1. Parametrization. J. Chem. Theory Comput. 2008;4:2067–2084.
  • Zhou Y, Pu J. Reaction path force matching: a new strategy of fitting specific reaction parameters for semiempirical methods in combined QM/MM simulations. J. Chem. Theory Comput. 2014;10:3038–3054.
  • Plotnikov NV, Kamerlin SCL, Warshel A. Paradynamics: an effective and reliable model for ab lnitio qm/mm free-energy calculations and related tasks. J. Phys. Chem. B. 2011;115:7950–7962.
  • Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B. 1998;58:7260–7268.
  • Elstner M, Frauenheim T, Suhai S. An approximate DFT method for QM/MM simulations of biological structures and processes. THEOCHEM. 2003;632:29–41.
  • Gaus M, Cui Q, Elstner M. Density functional tight binding (DFTB): application to organic and biological molecules. WIREs Comput. Mol. Sci. 2014;4:49–61.
  • Cui Q, Elstner M. Density functional tight binding: values of semi-empirical methods in an ab initio era. Phys. Chem. Chem. Phys. 2014;16:14368–14377.
  • Goyal P, Qian HJ, Irle S, et al. Feature article: molecular simulation of water and hydration effects in different environments: challenges and developments for DFTB based models. J. Phys. Chem. B 2014;118:11007–11027.
  • Gaus M, Cui Q, Elstner M. DFTB-3rd: extension of the self-consistent-charge density-functional tight-binding method SCC-DFTB. J. Chem. Theory Comput. 2011;7:931–948.
  • Thiel W. Perspectives on semiempirical molecular orbital theory. Adv. Chem. Phys. 1996;93:703–757.
  • Kubillus M, Kubař T, Gaus M, et al. Parameterization of the DFTB3 method for BR, CA, CL, F, I, K, and NA in organic and biological systems. J. Chem. Theory Comput. 2015;11:332–342.
  • Lu X, Gaus M, Elstner M, et al. Parameterization of DFTB3/3OB for Magnesium and Zinc for chemical and biological applications. J. Phys. Chem. B (Jorgensen Festschrift). 2015;119:1062–1082.
  • Gaus M, Jin H, Demapan D, et al. DFTB3 parametrization for copper: the importance of orbital angular momentum dependence of hubbard parameters. J. Chem. Theory Comput. 2015;11:4205–4219.
  • Xu DG, Cui Q, Guo H. Quantum mechanical/molecular mechanical studies of zinc hydrolases. Int. Rev. Phys. Chem. 2014;33:1–41.
  • Chakravorty DK, Wang B, Lee CW, et al. Simulations of allosteric motions in the zinc sensor czra. J. Am. Chem. Soc. 2012;134:3367–3376.
  • Mlynsky V, Banas P, Sponer J, et al. Comparison of ab initio, dft, and semiempirical QM/MM approaches for description of catalytic mechanism of hairpin ribozyme. J. Chem. Theory Comput. 2014;10:1608–1622.
  • Gaus M, Lu X, Elstner M, et al. Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J. Chem. Theory Comput. 2014;10:1518–1537.
  • Torrie GM, Valleau JP. Non-physical sampling distributions in Monte-Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 1977;23:187–199.
  • Neria E, Karplus M. Molecular dynamics of an enzyme reaction: proton transfer in TIM. Chem. Phys. Lett. 1997;267:23–30.
  • Warshel A. Computer modeling of chemical reactions in enzymes and solution. New York (NY): Wiley; 1991.
  • Mo YR, Gao JL. Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: application to an S(N)2 reaction in water. J. Comput. Chem. 2000;21:1458–1469.
  • Bartels C, Karplus M. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J. Comput. Chem. 1997;18:1450–1462.
  • Darve E, Pohorille A. Calculating free energies using average force. J. Chem. Phys. 2001;115:9169–9183.
  • Sprik M, Ciccotti G. Free energy from constrained molecular dynamics. J. Chem. Phys. 1998;109:7737–7744.
  • Kumar S, Bouzida D, Swendsen RH, et al. The weighted histogram analysis method for free-energy calculations on biomolecules I. The method. J. Comput. Chem. 1992;13:1011–1021.
  • Riccardi D, Koenig P, Guo H, et al. Proton transfer in carbonic anhdyrase is controlled by electrostatics rather than the orientation of the acceptor. Biochemistry. 2008;47:2369–2378.
  • den Otter WK. Thermodynamic integration of the free energy along a reaction coordinate in cartesian coordinate. J. Chem. Phys. 2000;112:7283.
  • Henin J, Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 2004;121:2904–2914.
  • Rosta E, Hummer G. Free energies from dynamic weighted histogram analysis using unbiased markov state model. J. Chem. Theory Comput. 2015;11:276–285.
  • Wu H, Mey ASJS, Rosta E, et al. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states. J. Chem. Phys. 2014;141:214106.
  • Sugita Y, Kitao A, Okamoto Y. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 2000;113:6042–6051.
  • Murata K, Sugita Y, Okamoto Y. Free energy calculations for DNA base stacking by replica-exchange umbrella sampling. Chem. Phys. Lett. 2004;385:1–7.
  • Fukunishi H, Watanabe O, Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. J. Chem. Phys. 2002;116:9058–9067.
  • Park S, Kim T, Im W. Transmembrane helix assembly by window exchange umbrella sampling. Phys. Rev. Lett. 2012;108:108102.
  • Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008;71:126601.
  • Barducci A, Bonomi M, Parrinello M. Metadynamics. Wiley Int. Rev. Comput. Mol. Sci. 2011;1:826–843.
  • Huber T, Torda A, van Gunsteren WF. Local elevation: a method for improving the searching properties of molecular dynamics simulation. J. Comput. Aided Mol. Des. 1994;8:695–708.
  • Dama JF, Parrinello M, Voth GA. Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 2014;112:240602.
  • Barducci A, Bussi G, Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008;100:020603.
  • Piana S, Laio A. A bias-exchange approach to protein folding. J. Phys. Chem. B. 2007;111:4553–4559.
  • Fukui K. The path of chemical reactions -- the IRC approach. Acc. Chem. Res. 1981;14:363–368.
  • Zhang YK, Kua J, Mccammon JA. Influence of structural fluctuation on enzyme reaction energy barriers in combined quantum mechanical/molecular mechanical studies. J. Phys. Chem. B. 2003;107:4459–4463.
  • Wales DJ. Energy landscapes. Cambridge University Press; 2003.
  • Bolhuis PG, Chandler D, Dellago C, et al. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 2002;53:291–318.
  • Maragliano L, Fischer A, Vanden-Eijnden E, et al. String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 2006;125:024106.
  • Dellago C, Bolhuis PG, Geissler PL. Transition path sampling. Adv. Chem. Phys. 2003;123:1–78.
  • Weinan E, Ren EW, Vanden-Eijnden E. Transition pathways in complex systems: reaction coordinates, isocommittor surfaces, and transition tubes. Chem. Phys. Lett. 2005;413:242–247.
  • Best RB, Hummer G. Reaction coordinates and rates from transition paths. Proc. Natl. Acad. Sci. USA 2005;102:6732–6737.
  • Peters B, Trout BL. Obtaining reaction coordinates by likelihood maximization. J. Chem. Phys. 2006;125:054108.
  • Krivov SV, Karplus M. One-dimensional free-energy profiles of complex systems: progress variables that preserve the barriers. J. Phys. Chem. B. 2006;110:12689–12698.
  • Elber R, Karplus M. A method for determining reaction paths in large biomolecules: application to myoglobin. Chem. Phys. Lett. 1987;139:375–380.
  • Henkelman G, Uberguaga B, Jónsson H. A climbingimage nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000;113:9978–9985.
  • Weinan E, Ren W, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 2007;126:164103.
  • Ovchinnikov V, Karplus M, Vanden-Eijnden E. Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. J. Chem. Phys. 2011;134:085103.
  • Maragliano L, Vanden-Eijnden E. On-the-fly string method for minimum free energy paths calculation. Chem. Phys. Lett. 2007;446:182–190.
  • Maragliano L, Roux B, Vanden-Eijnden E. A comparison between mean forces and swarms-of-rajectories string methods. J. Chem. Theory Comput. 2014;10:524–533.
  • Pan AC, Sezer D, Roux B. Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. B 2008;112:3432–3440.
  • Sanchez-Martinez M, Field M, Crehuet R. Enzymatic minimum free energy path calculations using swarms of trajectories. J. Phys. Chem. B 2014;119:1103–1113.
  • Hu H, Lu ZY, Yang WT. QM/MM minimum free-energy path: methodology and application to triosephosphate isomerase. J. Chem. Theory Comput. 2007;3:390–406.
  • Hu H, Lu ZY, Parks JM, et al. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface. J. Chem. Phys. 2008;128:034105.
  • Muller EM, de Meijere A, Grubmuller H. Predicting unimolecular chemical reactions: chemical flooding. J. Chem. Phys. 2002;116:897–905.
  • Yang LJ, Gao YQ. A selective integrated tempering method. J. Chem. Phys. 2009;131:214109.
  • Gao YQ. An integrate-over-temperature approach for enhanced sampling. J. Chem. Phys. 2008;128:064105.
  • Wang L, Friesner RA, Berne BJ. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B 2011;115:9431–9438.
  • Zhang J, Yang YI, Yang LJ, et al. Conformational preadjustment in aqueous claisen rearrangement revealed by SITS-QM/MM MD simulations. J. Phys. Chem. B 2015;119:5518–5530.
  • Straatsma TP, McCammon JA. Computational alchemy. Annu. Rev. Phys. Chem. 1992;43:407–435.
  • Kollman PA. Free-energy calculations -- applications to chemical and biochemical phenomena. Chem. Rev. 1993;93:2395–2417.
  • Simonson T, Archontis G, Karplus M. Free energy simulations come of age: protein-ligand recognition. Acc. Chem. Res. 2002;35:430–437.
  • Mori T, Hamers RJ, Pedersen JA, et al. Integrated hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling. J. Phys. Chem. B. 2014;118:8210–8220.
  • Christ CD, van Gunsteren WF. Enveloping distribution sampling: a method to calculate free energy differences from a single simulation. J. Chem. Phys. 2007;126:184110.
  • Marti S, Moliner V, Tuñón I. Improving the qm/mm description of chemical processes: a dual level strategy to explore the potential energy surface in very large systems. J. Chem. Theory Comput. 2005;1:1008–1016.
  • Claeyssens F, Harvey JN, Manby FR, et al. High-accuracy computation of reaction barriers in enzymes. Angew. Chem. Int. Ed. 2006;45:6856–6859.
  • Woods CJ, Manby FR, Mulholland AJ. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. J. Chem. Phys. 2008;128:014109.
  • Retegan M, Martins-Costa M, Ruiz-Lopez MF. Free energy calculations using dual-level born-oppenheimer molecular dynamics. J. Chem. Phys. 2010;133:064103.
  • Polyak I, Benighaus T, Boulanger E, et al. Quantum mechanics/molecular mechanics dual hamiltonian free energy perturbation. J. Chem. Phys. 2013;139:064105.
  • König G, Hudson PS, Boresch S, et al. Multiscale free energy simulations: an efficient method for connecting classical MD simulations to QM or QM/MM free energies using Non-Boltzmann Bennett reweighting schemes. J. Chem. Theory Comput. 2014;10:1406–1419.
  • Heimdal J, Ryde U. Convergence of qm/mm free-energy perturbations based on molecular-mechanics or semiempirical simulations. Phys. Chem. Chem. Phys. 2012;14:12592–12604.
  • Plotnikov NV. Computing the free energy barriers for less by sampling with a coarse reference potential while retaining accuracy of the target fine model. J. Chem. Theory Comput. 2014;10:2987–3001.
  • Nam K. Acceleration of ab initio QM/MM calculations under periodic boundary conditions by multiscale and multiple time step approaches. J. Chem. Theory Comput. 2014;10:4175–4183.
  • Pohorille A, Jarzynski C, Chipot C. Good practices in free-energy calculations. J. Phys. Chem. B 2010;114:10235–10253.
  • Jia XY, Wang MT, Shao YH, et al. Quantum mechanical/molecular mechanical calculation of solvation free energy based on a decoupling process. J. Chem. Theory Comput. 2015. submitted for publication.
  • Brooks BR, Brooks CL III, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614.
  • Koenig P, Ghosh N, Hoffman M, et al. Towards theoretical analysis of long-range proton transfer kinetics in biomolecular pumps. J. Phys. Chem. A. 2006;110:548–563.
  • Zienau J, Cui Q. Implementation of the solvent macromolecule boundary potential and application to model and realistic enzyme systems. J. Phys. Chem. B. 2012;116:12522–12534.
  • Petersen MK, Iyengar SS, Day TJF, et al. The hydrated proton at the water liquid/vapor interface. J. Phys. Chem. B. 2004;108:14804–14806.
  • Mori T, Hamers RJ, Pedersen JA, et al. An explicit consideration of desolvation is critical to binding free energy calculations of charged molecules at ionic surfaces. J. Chem. Theory Comput. 2013;9:5059–5069.
  • Gaus M, Goez A, Elstner M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 2012;9:338–354.
  • Peng YX, Swanson JMJ, Kang SG, et al. Hydrated excess protons can create their own water wires. J. Phys. Chem. B. 2015;119:9212–9218.
  • Silverman DN, McKenna R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc. Chem. Res. 2007;40:669–675.
  • Sham YY, Muegge I, Warshel A. Simulating proton translocations in proteins: probing proton transfer pathways in the rhodobacter sphaeroides reaction center. Proteins: Struct., Funct. Bioinf. 1999;36:484–500.
  • Kato M, Pisliakov AV, Warshel A. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations. Proteins: Struct. Funct. Bioinf. 2006;64:829–844.
  • Weinan E, Vanden-Eijnden E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 2010;61:391–420.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652.
  • Lee C, Yang W, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789.
  • Brooks CL III, Karplus M. Deformable stochastic boundaries in molecular dynamics. J. Chem. Phys. 1983;79:6312–6325.
  • Karplus M, Kuschick JN. Method for estimating the configurational entropy of macromolecules. Macromolecules. 1981;14:325–332.
  • Schlitter J. Estimation of absolute and relative entropies of macromolecules using the covariance-matrix. Chem. Phys. Lett. 1993;215:617–621.
  • MacKerell AD Jr, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998;102:3586–3616.
  • Shivakumar D, Deng YQ, Roux B. Computations of absolute solvation free energies of small molecules using explicit and implicit solvent model. J. Chem. Theory Comput. 2009;5:919–930.
  • Deng YQ, Roux B. Hydration of amino acid side chains: nonpolar and electrostatic contributions calculated from staged molecular dynamics free energy simulations with explicit water molecules. J. Phys. Chem. B. 2004;108:16567–16576.
  • Lin Y, Aleksandrov A, Simonson T, et al. An overview of electrostatic free energy computations for solutions and proteins systems. J. Chem. Theory Comput. 2014;10:2690–2709.
  • Lu X, Cui Q. Charging free energy calculations using the generalized solvent boundary potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and reduction potential in proteins. J. Phys. Chem. B 2013;117:2005–2018.
  • Kastenholz Mika A, Hünenberger Philippe H. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. J. Chem. Phys. 2006;124:1–20.
  • Riccardi D, Li G, Cui Q. The importance of van der Waals interactions in QM/MM simulations. J. Phys. Chem. B 2004;108:6467–6478.
  • Cui Q, Elstner M, Kaxiras E, et al. A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J. Phys. Chem. B. 2001;105:569–585.
  • Hou G, Zhu X, Elstner M, et al. A modified qm/mm hamiltonian with the self-consistent-charge density-functional-tight-binding theory for highly charged qm regions. J. Chem. Theory Comput. 2012;8:4293–4304.
  • Giese TJ, York DM. Charge-dependent model for many-body polarization, exchange, and dispersion interactions in hybrid quantum mechanical/molecular mechanical calculations. J. Chem. Phys. 2007;127:194101.
  • Im W, Berneche S, Roux B. Generalized solvent boundary potential for computer simulations. J. Chem. Phys. 2001;114:2924–2937.
  • Schaefer P, Riccardi D, Cui Q. Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J. Chem. Phys. 2005;123: Art. No. 014905.
  • Marenich AV, Kelly CP, Thompson JD et al. Minnesota solvation database – version 2012. 2012.
  • Rowley CN, Roux B. The solvation structure of na1 and na1 in liquid water determined from high level ab initio molecular dynamics simulations. J. Chem. Theory Comput. 2012;8:3526–3535.
  • Kubo R, Toda M, Hashitsume N. Statistical physics II: nonequilibrium statistical mechanics. Springer; 2003.
  • Maeda S, Ohno K, Morokuma K. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the addf and afir methods. Phys. Chem. Chem. Phys. 2013;15:3683–3701.
  • Habershon S. Sampling reactive pathways with random walks in chemical space: applications to molecular dissociation and catalysis. J. Chem. Phys. 2015;143:094106.
  • Jacobson MP, Kalyanaraman C, Zhao SW, et al. Leveraging structure for enzyme function prediction: methods, opportunities, and challenges. Trends Biochem. Sci. 2014;39:363–371.
  • Tawfik DS. Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency? Curr. Opin. Chem. Biol. 2014;21:73–80.
  • Toth-Petroczy A, Tawfik DS. The robustness and innovability of protein folds. Curr. Opin. Struct. Biol. 2014;26:131–138.
  • Murphy CJ, Vartanian AM, Geiger FM, et al. Biological responses to engineered nanomaterials: needs for the next decade. ACS Central. 2015;1:117–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.