249
Views
3
CrossRef citations to date
0
Altmetric
Special Issue: Frontiers of Molecular Simulation in China

Drop movements and replacement on surface driven by shear force via hybrid atomistic–continuum simulations

, &
Pages 855-862 | Received 27 Dec 2015, Accepted 28 Feb 2016, Published online: 06 Apr 2016

References

  • Bear J. Dynamics of fluids in porous media. North Chelmsford, MA: Courier Corporation; 2013.
  • Dimitrakopoulos P, Higdon J. Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows. J. Fluid Mech. 1997;336:351–378.10.1017/S0022112096004788
  • Cristini V, Tan Y-C. Theory and numerical simulation of droplet dynamics in complex flows – a review. Lab Chip 2004;4:257–264.10.1039/B403226H
  • Reichard DL. Drop formation and impaction on the plant. Weed Technol. 1988;2:82–87.
  • Hodges SR, Jensen OE. Spreading and peeling dynamics in a model of cell adhesion. J. Fluid Mech. 2002;460:381–409.
  • Chen S, Wang M, Xia Z. Multiscale fluid mechanics and modeling. Procedia IUTAM. 2014;10:100–114.10.1016/j.piutam.2014.01.012
  • Hadjiconstantinou NG. Hybrid atomistic-continuum formulations and the moving contact-line problem. J. Comput. Phys. 1999;154:245–265.10.1006/jcph.1999.6302
  • Peng H, Birkett GR, Nguyen AV. The impact of line tension on the contact angle of nanodroplets. Mol. Simul. 2014;40:934–941.10.1080/08927022.2013.828210
  • Nie XB, Chen SY, Robbins MO. A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow. J. Fluid Mech. 2004;500:55–64.10.1017/S0022112003007225
  • Grecov D, de Andrade Lima LRP, Rey AD. Multiscale simulation of flow-induced texture formation in polymer liquid crystals and carbonaceous mesophases. Mol. Simul. 2005;31:185–199.10.1080/08927020412331332604
  • O’Connell ST, Thompson PA. Molecular dynamics–continuum hybrid computations: a tool for studying complex fluid flows. Phys. Rev. E. 1995;52:R5792–R5795.10.1103/PhysRevE.52.R5792
  • Weinan E, Engquist B, Li X, Ren WQ, Vanden-Eijnden E.. Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2007;2:367–450.
  • Yasuda S, Yamamoto R. A model for hybrid simulations of molecular dynamics and computational fluid dynamics. Phys. Fluids(1994-present). 2008;20:113101.10.1063/1.3003218
  • Asproulis N, Kalweit M, Drikakis D. A hybrid molecular continuum method using point wise coupling. Adv. Eng. Softw. 2012;46:85–92.10.1016/j.advengsoft.2010.10.010
  • Borg MK, Lockerby DA, Reese JM. A multiscale method for micro/nano flows of high aspect ratio. J. Comput. Phys. 2013;233:400–413.10.1016/j.jcp.2012.09.009
  • Docherty SY, Borg MK, Lockerby DA, Reese JM. Multiscale simulation of heat transfer in a rarefied gas. Int. J. Heat Fluid Flow 2014;50:114–125.10.1016/j.ijheatfluidflow.2014.06.003
  • Patronis A, Lockerby DA. Multiscale simulation of non-isothermal microchannel gas flows. J. Comput. Phys. 2014;270:532–543.10.1016/j.jcp.2014.04.004
  • Wang M, Liu J, Chen S. Electric potential distribution in nanoscale electroosmosis: from molecules to continuum. Mol. Simul. 2007;33:1273–1277.
  • Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 1998;30:329–364.10.1146/annurev.fluid.30.1.329
  • Xie CY, Zhang JY, Bertola V, Wang MR. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling. J. Coll. Interf. Sci. 2016;463:317–323.10.1016/j.jcis.2015.10.054
  • Hunenberger PH. Thermostat algorithms for molecular dynamics simulations. In Advanced computer simulation. Springer;2005. p. 105–149.
  • Hadjiconstantinou NG, Patera AT. Heterogeneous atomistic-continuum representations for dense fluid systems. Int. J. Mod. Phys. C 1997;08:967–976.10.1142/S0129183197000837
  • Werder T, Walther JH, Koumoutsakos P. Hybrid atomistic-continuum method for the simulation of dense fluid flows. J. Comput. Phys. 2005;205:373–390.10.1016/j.jcp.2004.11.019
  • Wagner G, Flekkoy EG. Hybrid computations with flux exchange. Philos. Trans. R. Soc. Lond. Ser. A 2004;362:1655–1666.
  • Mohamed KM, Mohamad AA. A review of the development of hybrid atomistic-continuum methods for dense fluids. Microfluid. Nanofluid. 2010;8:283–302.10.1007/s10404-009-0529-z
  • Flekkoy EG, Wagner G, Feder J. Hybrid model for combined particle and continuum dynamics. Europhys. Lett. 2000;52:271–276.10.1209/epl/i2000-00434-8
  • Zhou WJ, Luan HB, He YL, Sun J, Tao WQ. A study on boundary force model used in multiscale simulations with non-periodic boundary condition. Microfluid. Nanofluid. 2014;16:587–595.10.1007/s10404-013-1251-4
  • Mendiburu AA, Carroccib LR, Carvalho JA. Analytical solution for transient one-dimensional Couette flow considering constant and time-dependent pressure gradients. Therm. Eng. 2009;8:92–98.
  • Salomons E, Mareschal M. Surface tension, adsorption and surface entropy of liquid-vapour systems by atomistic simulation. J. Phys. Conden. Matter 1991;3:3645–3661.
  • Mecke M, Winkelmann J, Fischer J. Molecular dynamics simulation of the liquid-vapor interface: the Lennard-Jones fluid. J. Chem. Phys. 1997;107:9264–9270.10.1063/1.475217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.