2,514
Views
30
CrossRef citations to date
0
Altmetric
Article

Mechanical properties of pristine and nanoporous graphene

, , &
Pages 1502-1511 | Received 30 Nov 2015, Accepted 02 Jul 2016, Published online: 14 Sep 2016

References

  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Boukhvalov DW, Katsnelson MI. Chemical functionalization of graphene with defects. Nano Lett. 2008;8:4373–4379.
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett. 2012;12:3602–3608.
  • Jiang D, Cooper VR, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 2009;9:4019–4024.
  • Lee JH, Loya PE, Lou J, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014;346:1092–1096.
  • Chen R, Zhao T, Wu W, et al. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014;14:5899-5904.
  • Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565.
  • Gomez-Navarro C, Weitz RT, Bittner AM, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7:3499–3503.
  • Blakslee OL, Proctor DG, Seldin EJ, et al. Elastic constants of compression annealed pyrolytic graphite. J. Appl. Phys. 1970;41:3373–3382.
  • Bunch JS, Verbridge SS, Alden JS, et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008;8:2458–2462.
  • Zhao H, Min K, Aluru NR. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 2009;9:3012–3015.
  • Wong C, Vijayaraghavan V. Nanomechanics of free form and water submerged single layer graphene sheet under axial tension by using molecular dynamics simulation. Mater. Sci. Eng.: A. 2012;556:420–428.
  • Ni Z, Bu H, Zou M, et al. Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B. 2010;405:1301–1306.
  • Jhon YI, Jhon YM, Yeom GY, et al. Orientation dependence of the fracture behavior of graphene. Carbon. 2014;66:619–628.
  • Dewapriya M, Phani AS, Rajapakse R. Influence of temperature and free edges on the mechanical properties of graphene. Modell. Simul. Mater. Sci. Eng. 2013;21:065017.
  • Zhao H, Aluru N. Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 2010;108:064321.
  • Sun Y, Ma F, Ma D, et al. Stress-induced annihilation of stone-wales defects in graphene nanoribbons. J. Phys. D: Appl. Phys. 2012;45:305303–305307.
  • Xu L, Wei N, Zheng Y. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology. 2013;24:505703–505709.
  • Ito A, Okamoto S. Molecular dynamics analysis on effects of vacancies upon mechanical properties of graphene and graphite. Eng. Lett. 2012;20:271–278.
  • Ansari R, Motevalli B, Montazeri A, et al. Fracture analysis of monolayer graphene sheets with double vacancy defects via md simulation. Solid State Commun. 2011;151:1141–1146.
  • Dewapriya M, Rajapakse R, Phani A. Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int. J. Fract. 2014;187:199–212.
  • Walther JH, Jaffe RL, Halicioglu T, et al. Carbon nanotubes in water: structural characteristics and energetics. J. Phys. Chem. B. 2001;105:9980–9987.
  • Borg MK, Lockerby DA, Reese JM. The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations. J. Chem. Phys. 2014;140:074110.
  • Borg MK, Macpherson GB, Reese JM. Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries. Mol. Simul. 2010;36:745–757.
  • Izaguirre JA. Langevin stabilisation of multiscale mollified molecular dynamics. In: Brandt A, Bernholc J, Binder K,editors. Multiscale computational methods in chemistry and physics. Vol. 117, NATO science series: series III. Amsterdam: IOS Press; 2001. p. 34–47.
  • Jin Y, Yuan F. Atomistic simulations of J-integral in 2D graphene nanosystems. J. Nanosci. Nanotechnol. 2005;5:2099–2107.
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000;112:6472–6486.
  • Griebel M, Knapek S, Zumbusch G. Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications. Vol. 5, Springer science and business media. 2007.
  • Walther JH, Jaffe RL, Kotsalis EM, et al. Hydrophobic hydration of c60 and carbon nanotubes in water. Carbon. 2004;42:1185–1194.
  • Le MQ, Batra RC. Single-edge crack growth in graphene sheets under tension. Comput. Mater. Sci. 2013;69:381–388.
  • Nicholls W, Borg MK, Lockerby DA, et al. Water transport through carbon nanotubes with defects. Mol. Simul. 2012;38:781–785.
  • Ritos K, Dongari N, Borg MK, et al. Dynamics of nanoscale droplets on moving surfaces. Langmuir. 2013;29:6936–6943.
  • The OpenFOAM Foundation Ltd. Available from: http://www.openfoam.org. 2016.
  • Sakhaee-Pour A. Elastic properties of single-layered graphene sheet. Solid State Commun. 2009;149:91–95.
  • Shokrieh MM, Rafiee R. Prediction of young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 2010;31:790–795.
  • Wang MC, Yan C, Ma L, et al. Effect of defects on fracture strength of graphene sheets. Comput. Mater. Sci. 2012;54:236–239.
  • Lu Q, Gao W, Huang R. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modell. Simul. Mater. Sci. Eng. 2011;19:054006.
  • Terdalkar SS, Huang S, Yuan H, et al. Nanoscale fracture in graphene. Chem. Phys. Lett. 2010;494:218–222.
  • Zhang YY, Gu Y. Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput. Mater. Sci. 2013;71:197–200.
  • Zhang H, Duan Z, Zhang X, et al. Strength and fracture behavior of graphene grain boundaries: effects of temperature, inflection, and symmetry from molecular dynamics. Phys. Chem. Chem. Phys. 2013;15:11794–11799.
  • Dewapriya MAN, Rajapakse RKND, Phani A. Molecular dynamics simulation of fracture of graphene. In: 13th international conference on fracture; 2013; Beijing
  • Liu Y, Chen X. Mechanical properties of nanoporous graphene membrane. J. Appl. Phys. 2014;115:034303.
  • Zhu J, He M, Qiu F. Effect of vacancy defects on the young’s modulus and fracture strength of graphene: A molecular dynamics study. Chin. J. Chem. 2012;30:1399–1404.
  • Hao F, Fang D, Xu Z. Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 2011;99:041901.
  • Cohen-Tanugi D, Grossman JC. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 2014;14:6171–6178.
  • Shenoy VB, Reddy CD, Ramasubramaniam A, et al. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008;101:245501–245504.