530
Views
15
CrossRef citations to date
0
Altmetric
Article

A molecular dynamics investigation into the mechanisms of material removal and subsurface damage of nanoscale high speed laser-assisted machining

&
Pages 42-51 | Received 22 Mar 2016, Accepted 20 Aug 2016, Published online: 28 Sep 2016

References

  • Wobker HG, Tonshoff HK. High-efficiency grinding of structural ceramics. NIST Spec. Publ. 1993;847:71–183.
  • Rozzi JC, Barton MD. The laser-assisted edge milling of ceramic matrix composites [C]. In: ASME, International Manufacturing Science and Engineering Conference; American Society of Mechanical Engineers; 2009. p. 845–852.
  • Chang CW, Kuo CP. An investigation of laser-assisted machining of Al2O3 ceramics planing. Int. J. Mach. Tools Manuf. 2007;47:452–461.10.1016/j.ijmachtools.2006.06.010
  • Chang CW, Kuo CP. Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int. J. Mach. Tools Manuf. 2007;47:141–147.10.1016/j.ijmachtools.2006.02.009
  • Rozzi JC, Clavier OH, Barton MD. Laser-assisted pre-finishing of optical ceramic materials [C]. In: Defense and Security Symposium; International Society for Optics and Photonics. 2007;6545;65450P–65450P-7.
  • Zhang X, An W, Cao H. An expert system of cubic boron nitride (CBN) grinding wheel dressing in cam grinding. Mater. Manuf. Processes. 2012;27:1095–1100.
  • Pei QX, Lu C, Lee HP, et al. Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nanoscale Res. Lett. 2009;4:444–451.10.1007/s11671-009-9268-z
  • Zhang G, Guo J, Ming W, et al. Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method. Appl. Surf. Sci. 2014;290:359–367.10.1016/j.apsusc.2013.11.084
  • Ji P, Zhang Y. Femtosecond laser processing of germanium: an ab initio molecular dynamics study. J. Phys. D: Appl. Phys. 2013;46:495108.10.1088/0022-3727/46/49/495108
  • Gong XF, Yang GX, Li P, et al. Molecular dynamics simulation of pulsed laser ablation. Int. J. Mod. Phys. B. 2011;25:543–550.10.1142/S0217979211058122
  • Lin Z, Leveugle E, Bringa EM, et al. Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C. 2009;114:5686–5699.
  • Yang C, Wang Y, Xu X. Molecular dynamics studies of ultrafast laser-induced phase and structural change in crystalline silicon. Int. J. Heat Mass Transfer. 2012;55:6060–6066.10.1016/j.ijheatmasstransfer.2012.06.018
  • Zhang L, Zhao H, Ma Z, et al. A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation. AIP Adv. 2012;2:042116.10.1063/1.4763462
  • Ma YS, Chen XY, Liu B. Experimental study of lubricant depletion in heat assisted magnetic recording over the lifetime of the drive. Tribol. Lett. 2012;47:175–182.10.1007/s11249-012-9974-z
  • Lim MS, Gellman AJ. Kinetics of laser induced desorption and decomposition of Fomblin Zdol on carbon overcoats. Tribol. Int. 2005;38:554–561.10.1016/j.triboint.2005.01.006
  • Xu BX, Liu ZJ, Ji R, et al. Thermal issues and their effects on heat-assisted magnetic recording system. J. Appl. Phys. 2012;111:07B701.
  • Cardarelli F. Materials handbook: a concise desktop reference. Springer Science & Business Media; 2008.
  • Li B, Wong CH. Molecular dynamics simulation of thermal-induced local heating and depletion of ultrathin perfluoropolyether lubricant under moving laser heating. Tribol. Lett. 2014;55:303–313.10.1007/s11249-014-0363-7
  • Li Y, Wong CH, Li B, et al. Lubricant evolution and depletion under laser heating: a molecular dynamics study. Soft Matter. 2012;8:5649–5657.10.1039/c2sm07326a
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19.10.1006/jcph.1995.1039
  • Hendrickson B, Kolda TG. Graph partitioning models for parallel computing. Parallel Comput. 2000;26:1519–1534.10.1016/S0167-8191(00)00048-X
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 2010;18:015012.10.1088/0965-0393/18/1/015012
  • Moura CS, Amaral L. Molecular dynamics simulation of silicon nanostructures. Nucl. Instrum. Methods Phys. Res., Sect. B. 2005;228:37–40.10.1016/j.nimb.2004.10.019
  • Tersoff J. New empirical model for the structural properties of silicon. Phys. Rev. Lett. 1986;56:632–635.10.1103/PhysRevLett.56.632
  • Stillinger FH, Weber TA. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 1985;31:5262–5271.10.1103/PhysRevB.31.5262
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 1989;39:5566–5568.10.1103/PhysRevB.39.5566
  • Cheong WCD, Zhang LC. Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology. 2000;11:173–180.10.1088/0957-4484/11/3/307
  • Jang J, Lance MJ, Wen S, et al. Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 2005;53:1759–1770.10.1016/j.actamat.2004.12.025
  • Mehrez H, Ciraci S. Yielding and fracture mechanisms of nanowires. Phys. Rev. B. 1997;56:12632–12642.10.1103/PhysRevB.56.12632
  • Jang J, Lance MJ, Wen S, et al. Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 2005;53:1759–1770.10.1016/j.actamat.2004.12.025
  • Romero PA, Anciaux G, Molinari A, et al. Insights into the thermo-mechanics of orthogonal nanometric machining. Comput. Mater. Sci. 2013;72:116–126.10.1016/j.commatsci.2013.01.036
  • Zhu P, Hu Y, Ma T, et al. Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol. Lett. 2011;41:41–46.10.1007/s11249-010-9681-6
  • Shet C, Deng X. Finite element analysis of the orthogonal metal cutting process. J. Mater. Process. Technol. 2000;105:95–109.10.1016/S0924-0136(00)00595-1
  • Rozzi JC, Incropera FP, Shin YC. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: II. Assessment of parametric effects. Int. J. Heat Mass Transfer. 2000;43:1425–1437.10.1016/S0017-9310(99)00219-7
  • Rozzi JC, Pfefferkorn FE, Incropera FP, et al. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. comparison of predictions with measured surface temperature histories. Int. J. Heat Mass Transfer. 2000;43:1409–1424.10.1016/S0017-9310(99)00217-3
  • Jang J, Lance MJ, Wen S, et al. Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 2005;53:1759–1770.10.1016/j.actamat.2004.12.025
  • Tang Q, Chen F. MD simulation of phase transformations due to nanoscale cutting on silicon monocrystals with diamond tip. J. Phys. D: Appl. Phys. 2006;39:3674–3679.10.1088/0022-3727/39/16/022
  • Nguyen T, Zhang LC. Performance of a new segmented grinding wheel system. Int. J. Mach. Tools Manuf. 2009;49:291–296.10.1016/j.ijmachtools.2008.10.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.