559
Views
12
CrossRef citations to date
0
Altmetric
Article

A coarse-grained model for PCL: conformation, self-assembly of MePEG-b-PCL amphiphilic diblock copolymers

, &
Pages 92-101 | Received 06 Jun 2016, Accepted 31 Aug 2016, Published online: 11 Oct 2016

References

  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256.10.1016/j.progpolymsci.2010.04.002
  • Jabr-Milane LS, van Vlerken LE, Yadav S, et al. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev. 2008;34:592–602.10.1016/j.ctrv.2008.04.003
  • Dash TK, Konkimalla VB. Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer. Mol. Pharm. 2012;9:2365–2379.10.1021/mp3001952
  • Kao H-W, Chan C-J, Chang Y-C, et al. A pharmacokinetics study of radiolabeled micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in a colon carcinoma-bearing mouse model. Appl. Radiat. Isot. 2013;80:88–94.10.1016/j.apradiso.2013.05.011
  • Diao Y-Y, Li H-Y, Fu Y-H, et al. Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. Int. J. Nanomed. 2011;6:1955–1962.
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Delivery Rev. 2001;47:113–131.10.1016/S0169-409X(00)00124-1
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003;92:1343–1355.10.1002/jps.10397
  • Huynh L, Neale C, Pomès R, et al. Systematic design of unimolecular star copolymer micelles using molecular dynamics simulations. Soft Matter. 2010;6:5491–5501.10.1039/c001988g
  • Thota N, Luo Z, Hu Z, et al. Self-assembly of amphiphilic peptide (AF) 6 H 5 K 15 : coarse-grained molecular dynamics simulation. J. Phys. Chem. B. 2013;117:9690–9698.10.1021/jp4059752
  • Thota N, Hu Z, Jiang J. Ibuprofen loading and release in amphiphilic peptide FA32 and its derivatives: a coarse-grained molecular dynamics simulation study. Mol. Simul. 2016;42:679–687.10.1080/08927022.2015.1079907
  • Nie SY, Sun Y, Lin WJ, et al. Dissipative particle dynamics studies of doxorubicin-loaded micelles assembled from four-arm star triblock polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-release mechanism. J. Phys. Chem. B. 2013;117:13688–13697.10.1021/jp407529u
  • Thota N, Jiang J. Computational amphiphilic materials for drug delivery. Front. Mater. 2015;2: Article 64.
  • Loverde SM. Computer simulation of polymer and biopolymer self-assembly for drug delivery. Mol. Simul. 2014;40:794–801.10.1080/08927022.2014.898118
  • Loverde SM, Klein ML, Discher DE. Nanoparticle shape improves delivery: rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv. Mater. 2012;24:3823–3830.10.1002/adma.v24.28
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824.10.1021/jp071097f
  • Marrink SJ, Tieleman DP. Perspective on the Martini model. Chem. Soc. Rev. 2013;42:6801–6822.10.1039/c3cs60093a
  • Lee H, de Vries AH, Marrink SJ, et al. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J. Phys. Chem. B. 2009;113:13186–13194.10.1021/jp9058966
  • Rossi G, Monticelli L, Puisto SR, et al. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter. 2011;7:698–708.10.1039/C0SM00481B
  • Lee H, Larson RG. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in dppc bilayers with a coarse-grained model. J. Phys. Chem. B. 2006;110:18204–18211.10.1021/jp0630830
  • Nawaz S, Carbone P. Coarse-graining poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymers using the MARTINI force field. J. Phys. Chem. B. 2014;118:1648–1659.10.1021/jp4092249
  • Wang H, Shentu B, Faller R. Refinement of a coarse-grained model of poly(2,6-dimethyl-1,4-phenylene ether) and its application to blends of PPE and PS. Mol. Simul. 2016;42:312–320.10.1080/08927022.2015.1047368
  • Lee H, Larson RG. Molecular dynamics study of the structure and interparticle interactions of polyethylene glycol-conjugated PAMAM dendrimers. J. Phys. Chem. B. 2009;113:13202–13207.10.1021/jp906497e
  • Lee H, Pastor RW. Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. J. Phys. Chem. B. 2011;115:7830–7837.10.1021/jp2020148
  • Jorgensen WL, Madura JD, Swenson CJ. Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 1984;106:6638–6646.10.1021/ja00334a030
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225–11236.10.1021/ja9621760
  • Berendsen HJC, Postma JPM, van Gusteren WF, et al. Intermolecular forces. Dordrecht: Reidel; 1981.
  • Pronk S, Pall S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854.10.1093/bioinformatics/btt055
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.10.1016/j.softx.2015.06.001
  • Hess B, Bekker H, Berendsen HJC., et al. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472.10.1002/(ISSN)1096-987X
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.10.1063/1.464397
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101.10.1063/1.2408420
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690.10.1063/1.448118
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190.10.1063/1.328693
  • Bulacu M, Goga N, Zhao W, et al. Improved angle potentials for coarse-grained molecular dynamics simulations. J. Chem. Theory Comput. 2013;9:3282–3292.10.1021/ct400219n
  • Di Pasquale N, Marchisio DL, Barresi AA, et al. Solvent structuring and its effect on the polymer structure and processability: the case of water-acetone poly-ε-caprolactone mixtures. J. Phys. Chem. B. 2014;118:13258–13267.10.1021/jp505348t
  • Rubinstein M, Colby RH. Polymer physics. New York (NY): Oxford University Press; 2003.
  • Carbone P, Varzaneh HAK, Chen X, et al. Transferability of coarse-grained force fields: the polymer case. J. Chem. Phys. 2008;128:064904.10.1063/1.2829409
  • Fuhrmans M, Sanders BP, Marrink SJ, et al. Effects of bundling on the properties of the SPC water model. Theor. Chem. Acc. 2009;125:335–344.
  • Hess B. Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 2002;116:209–217.10.1063/1.1421362
  • Yeh I-C, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem. B. 2004;108:15873–15879.10.1021/jp0477147
  • Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J. Colloid Interface Sci. 2008;322:505–515.10.1016/j.jcis.2008.03.033
  • Zelenková T, Fissore D, Marchisio DL, et al. Size control in production and freeze-drying of poly-ε-caprolactone nanoparticles. J. Pharm. Sci. 2014;103:1839–1850.10.1002/jps.23960
  • Yesylevskyy SO, Schäfer LV, Sengupta D, et al. Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 2010;6:e1000810.10.1371/journal.pcbi.1000810
  • Cheng J, Vishnyakov A, Neimark AV. Morphological transformations in polymer brushes in binary mixtures: DPD study. Langmuir. 2014;30:12932–12940.10.1021/la503520e
  • Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J. Pharm. Sci. 2008;97:1179–1190.10.1002/jps.21037
  • Sanders SA, Panagiotopoulos AZ. Micellization behavior of coarse grained surfactant models. J. Chem. Phys. 2010;132:114902-1–114902-9.10.1063/1.3358354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.