203
Views
6
CrossRef citations to date
0
Altmetric
Articles

Noncovalent interactions of nucleic acid bases with fullerene C60 and short carbon nanotube models: a dispersion-corrected DFT study

&
Pages 205-212 | Received 14 Jun 2016, Accepted 04 Oct 2016, Published online: 17 Oct 2016

References

  • Salvador-Morales C, Green MLH, Sim RB. Interaction between carbon nanotubes and biomolecules. In: Basiuk VA, Basiuk EV, editors. Chemistry of Carbon nanotubes. Stevenson Ranch, CA: American Scientific Publishers; 2008, Vol. 3, Chap. 1, pp. 1–23.
  • Bakry R, Vallant RM, Najam-ul-Haq M, et al. Medicinal applications of fullerenes. Int J Nanomed. 2007;2:639–649.
  • Cataldo F, Da Ros T, editors. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. New York (NY): Springer; 2008.
  • Williams KA, Veenhuizen PTM, de la Torre BG, et al. Nanotechnology: carbon nanotubes with DNA recognition. Nature. 2002;420:761–761.10.1038/420761a
  • Paul A, Bhattacharya B. DNA functionalized carbon nanotubes for nonbiological applications. Mater Manuf Process. 2010;25:891–908.10.1080/10426911003720755
  • Liu Z, Yang K, Lee S. Single-walled carbon nanotubes in biomedical imaging. J Mater Chem. 2011;21:586–598.10.1039/C0JM02020F
  • Santosh M, Panigrahi S, Bhattacharyya D, et al. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. J Chem Phys. 2012;136:065106(1–10).10.1063/1.3682780
  • Micoli A, Turco A, Araujo-Palomo E, et al. Supramolecular Assemblies of nucleoside functionalized carbon nanotubes: synthesis, film preparation, and properties. Chem Eur J. 2014;20:5397–5402.10.1002/chem.v20.18
  • Micoli A, Quintana M, Prato M. Novel nanostructures based on the active interplay between nucleobases and carbon nanotubes. Supramol Chem. 2013;25:567–573.10.1080/10610278.2013.824577
  • Cruz FJAL, de Pablo JJ, Mota JPB. Free energy landscapes of the encapsulation mechanism of DNA nucleobases onto carbon nanotubes. RSC Adv. 2014;4:1310–1321.10.1039/C3RA45033C
  • Lian Y, Yuan M, Zhao H. DNA wrapped metallic single-walled carbon nanotube sensor for Pb (II) detection. Fullerenes Nanotubes Carbon Nanostruct. 2014;22:510–518.10.1080/1536383X.2012.690462
  • Yan W, Pang D-W, Wang S-F, et al. Carbon nanomaterials—DNA bioconjugates and their applications. Fullerenes Nanotubes Carbon Nanostruct. 2005;13(Suppl. 1):309–318.10.1081/FST-200039327
  • Karachevtsev VA, Karachevtsev MV, Leontiev VS, et al. Nanohybrid Structures formed by carbon nanotubes with long polynucleotide. Fullerenes Nanotubes Carbon Nanostruct. 2010;18:531–537.10.1080/1536383X.2010.488532
  • Gao H, Kong Y, Cui D. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 2003;3:471–473.10.1021/nl025967a
  • Gao H, Kong Y. Simulation of DNA-nanotube interactions. Annual Rev Mater Res. 2004;34:123–150.10.1146/annurev.matsci.34.040203.120402
  • Contreras-Torres FF, Martínez-Lorán E. DNA insertion in and wrapping around carbon nanotubes. WIREs Comput Mol Sci. 2011;1:902–919.10.1002/wcms.60
  • Gowtham S, Scheicher RH, Pandey R, et al. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology. 2008;19:125701(1–6).10.1088/0957-4484/19/12/125701
  • Wang Y. Theoretical Evidence for the stronger ability of thymine to disperse SWCNT than cytosine and adenine: self-stacking of DNA bases vs their cross-stacking with SWCNT. J Phys Chem C. 2008;112:14297–14305.10.1021/jp803917t
  • Das A, Sood AK, Maiti PK, et al. Binding of nucleobases with single-walled carbon nanotubes: theory and experiment. Chem Phys Lett. 2008;453:266–273.10.1016/j.cplett.2008.01.057
  • Shukla MK, Dubey M, Zakar E, et al. Interaction of nucleic acid bases with single-walled carbon nanotube. Chem Phys Lett. 2009;480:269–272.10.1016/j.cplett.2009.09.031
  • Stepanian SG, Karachevtsev MV, Glamazda AY, et al. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes. J Phys Chem A. 2009;113:3621–3629.10.1021/jp810205a
  • Ramraj A, Hillier IH, Vincent MA, et al. Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes. Chem Phys Lett. 2010;484:295–298.10.1016/j.cplett.2009.11.068
  • Umadevi D, Sastry GN. Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J Phys Chem Lett. 2011;2:1572–1576.10.1021/jz200705w
  • Akdim B, Pachter R, Day PN, et al. On modeling biomolecular–surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces. Nanotechnology. 2012;23:165703(1–6).10.1088/0957-4484/23/16/165703
  • Amirani MC, Tang T, Cuervo J. Quantum mechanical treatment of binding energy between DNA nucleobases and carbon nanotube: a DFT analysis. Phys E. 2013;54:65–71.10.1016/j.physe.2013.05.024
  • Stepanian SG, Karachevtsev MV, Glamazda AY, et al. Stacking interaction of cytosine with carbon nanotubes: MP2, DFT and Raman spectroscopy study. Chem Phys Lett. 2008;459:153–158.10.1016/j.cplett.2008.05.035
  • Wang Y, Bu Y. Noncovalent interactions between cytosine and SWCNT: curvature dependence of complexes via π···π stacking and cooperative CH···π/NH···π. J Phys Chem. B. 2007;111:6520–6526.10.1021/jp0700433
  • Shukla MK, Leszczynski J. Fullerene (C60) forms stable complex with nucleic acid base guanine. Chem Phys Lett. 2009;469:207–209.10.1016/j.cplett.2008.12.092
  • YaV S, Woods LM, Dovbeshko GI. Adsorption of adenine and thymine and their radicals on single-wall carbon nanotubes. J Phys Chem C. 2007;111:18174–18181.
  • Stepanian SG, Karachevtsev MV, Karachevtsev VA, et al. Interactions of the Watson–Crick nucleic acid base pairs with carbon nanotubes and graphene: DFT and MP2 study. Chem Phys Lett. 2014;610–611:186–191.10.1016/j.cplett.2014.07.035
  • Mirzaei M, Ahangari RS. Formations of CNT modified 5-(halogen)uracil hybrids: DFT studies. Superlattices Microstruct. 2014;65:375–379.10.1016/j.spmi.2013.11.013
  • Mirzaei M, Kalhor HR, Hadipour NL. Covalent hybridization of CNT by thymine and uracil: a computational study. J Mol Model. 2011;17:95–699.
  • Mirzaei M, Gulseren O. DFT studies of CNT–functionalized uracil-acetate hybrids. Phys E. 2015;73:105–109.10.1016/j.physe.2015.05.018
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.10.1103/PhysRevLett.77.3865
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799.10.1002/(ISSN)1096-987X
  • Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92:508–517.10.1063/1.458452
  • Delley B. Fast calculations of electrostatics in crystals and large molecules. J Phys Chem. 1996;100:6107–6110.10.1021/jp952713n
  • Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756–7764.10.1063/1.1316015
  • Delley B, Ellis DE, Freeman AJ, et al. Binding energy and electronic structure of small copper particles. Phys Rev B. 1983;27:2132–2144.10.1103/PhysRevB.27.2132
  • Henao-Holguín LV, Basiuk VA. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes. J Mol Model. 2015;21:146(1–11).10.1007/s00894-015-2698-x
  • Basiuk VA, Henao-Holguín LV. Dispersion-corrected density functional theory calculations of meso-tetraphenylporphine-C60 complex by using DMol3 module. J Comput Theor Nanosci. 2014;11:1609–1615.10.1166/jctn.2014.3539
  • Basiuk EV, Martínez-Herrera M, Álvarez-Zauco E, et al. Noncovalent functionalization of graphene with a Ni(II) tetraaza[14]annulene complex. Dalton Trans. 2014;43:7413–7428.10.1039/C3DT52645C
  • Kolokoltsev Y, Sanders DP, Basiuk VA. Population and QTAIM Analysis of metalloporphyrin–fullerene supramolecular complexes. J Comput Theor Nanosci. 2015;12:674–681.10.1166/jctn.2015.3785
  • Basiuk VA, Alzate-Carvajal N, Henao-Holguín LV, et al. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): generation of paramagnetic centers. Appl Surf Sci. 2016;371:16–27.10.1016/j.apsusc.2016.02.166
  • Basiuk VA, González-Luciano E. Noncovalent interactions of amino acids with fullerene C60: a dispersion- corrected DFT study. Fullerenes Nanotubes Carbon Nanostruct. 2016;24:371–379.10.1080/1536383X.2016.1163687
  • Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2. 1993;5:799–805.10.1039/P29930000799
  • Delley B. The conductor-like screening model for polymers and surfaces. Mol Simul. 2006;32:117–123.10.1080/08927020600589684
  • de Leon A, Jalbout AF, Basiuk VA. SWNT–amino acid interactions: a theoretical study. Chem Phys Lett. 2008;457:185–190.10.1016/j.cplett.2008.03.079
  • Rodríguez-Galván A, Amelines-Sarria O, Rivera M, et al. Adsorption and self-assembly of anticancer antibiotic doxorubicin on single-walled carbon nanotubes. NANO: Brief Reports Rev. 2016;11:1650038 (1–9).10.1142/S1793292016500387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.