86
Views
1
CrossRef citations to date
0
Altmetric
Articles

Combined use of periodic reaction field and coarse-grained molecular dynamics simulations. I. phospholipid monolayer systems

Pages 971-976 | Received 05 Nov 2016, Accepted 09 Dec 2016, Published online: 09 Mar 2017

References

  • Klein ML, Shinoda W. Large-scale molecular dynamics simulations of self-assembling systems. Science. 2008;321:798–800.
  • Marrink SJ, de Vries AH, Tieleman DP. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta (BBA)-Biomembr. 2009;1788:149–168.
  • Smit B, Hilbers P, Esselink K, et al. Computer simulations of a water/oil interface in the presence of micelles. Nature. 1990;348:624–625.
  • Smit B, Schlijper A, Rupert L, et al. Effects of chain length of surfactants on the interfacial tension: molecular dynamics simulations and experiments. J Phys Chem. 1990;94:6933–6935.
  • Noguchi H, Takasu M. Self-assembly of amphiphiles into vesicles: a brownian dynamics simulation. Phys Rev E. 2001;64:041913.
  • Goetz R, Lipowsky R. Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys. 1998;108:7397–7409.
  • Groot RD, Rabone K. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J. 2001;81:725–736.
  • Shillcock JC, Lipowsky R. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys. 2002;117:5048–5061.
  • Kranenburg M, Smit B. Phase behavior of model lipid bilayers. J Phys Chem B. 2005;109:6553–6563.
  • Brannigan G, Lin LCL, Brown FL. Implicit solvent simulation models for biomembranes. Eur Biophys J. 2006;35:104–124.
  • Cooke IR, Deserno M. Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. J Chem Phys. 2005;123:224710.
  • Lyubartsev AP. Multiscale modeling of lipids and lipid bilayers. Eur Biophys J. 2005;35:53–61.
  • Stevens MJ. Coarse-grained simulations of lipid bilayers. J Chem Phys. 2004;121:11942–11948.
  • Farago O. Water-free computer model for fluid bilayer membranes. J Chem Phys. 2003;119:596–605.
  • Shelley JC, Shelley MY, Reeder RC, et al. A coarse grain model for phospholipid simulations. J Phys Chem B. 2001;105:4464–4470.
  • Shelley JC, Shelley MY, Reeder RC, et al. Simulations of phospholipids using a coarse grain model. J Phys Chem B. 2001;105:9785–9792.
  • Izvekov S, Voth GA. A multiscale coarse-graining method for biomolecular systems. J Phys Chem B. 2005;109:2469–2473.
  • Izvekov S, Voth GA. Multiscale coarse graining of liquid-state systems. J Chem Phys. 2005;123:134105.
  • Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108:750–760.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The martini force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.
  • Orsi M, Haubertin DY, Sanderson WE, et al. A quantitative coarse-grain model for lipid bilayers. J Phys Chem B. 2008;112:802–815.
  • Lyubartsev AP, Laaksonen A. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E. 1995;52:3730–3737.
  • Tschöp W, Kremer K, Batoulis J, et al. Simulation of polymer melts. i. coarse-graining procedure for polycarbonates. Acta Polym. 1998;49:61–74.
  • Sun Q, Faller R. Systematic coarse-graining of a polymer blend: polyisoprene and polystyrene. J Chem Theory Comput. 2006;2:607–615.
  • Shinoda W, Devane R, Klein M. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol Simul. 2007;33:27–36.
  • Shinoda W, DeVane R, Klein ML. Coarse-grained molecular modeling of non-ionic surfactant self-assembly. Soft Matter. 2008;4:2454–2462.
  • Voth GA, editor. Coarse-graining of condensed phase and biomolecular systems. Boca Raton (FL): CRC Press; 2008.
  • Shinoda W, DeVane R, Klein ML. Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B. 2010;114:6836–6849.
  • Ewald P. The calculation of optical and electrostatic grid potential. Ann Phys. 1921;64:253–87.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An n log (n) method for ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Essmann U, Perera L, Berkowitz M, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Kia A, Kim D, Darve E. Fast electrostatic force calculation on parallel computer clusters. J Comput Phys. 2008;227:8551–8567.
  • Yokota R, Barba LA, Narumi T, et al. Petascale turbulence simulation using a highly parallel fast multipole method on gpus. Comput Phys Commun. 2013;184:445–455.
  • Roberts J, Schnitker J. How the unit cell surface charge distribution affects the energetics of ion-solvent interactions in simulations. J Chem Phys. 1994;101:5024–5031.
  • Roberts J, Schnitker J. Boundary conditions in simulations of aqueous ionic solutions: a systematic study. J Phys Chem. 1995;99:1322–1331.
  • Luty B, Van Gunsteren W. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions. J Phys Chem. 1996;100:2581–2587.
  • Hünenberger PH, McCammon JA. Ewald artifacts in computer simulations of ionic solvation and ion--ion interaction: a continuum electrostatics study. J Chem Phys. 1999;110:1856–1872.
  • Hünenberger P, McCammon J. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem. 1999;78:69–88.
  • Weber W, Hünenberger P, McCammon J. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: influence of artificial periodicity on peptide conformation. J Phys Chem B. 2000;104:3668–3675.
  • Patra M, Karttunen M, Hyvönen M, et al. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J. 2003;84:3636–3645.
  • Patra M, Karttunen M, Hyvönen M, et al. Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B. 2004;108:4485–4494.
  • Monticelli L, Simões C, Belvisi L, et al. Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides. J Phys: Condens Matter. 2006;18:S329.
  • Smit B. Phase diagrams of Lennard-Jones fluids. J Chem Phys. 1992;96:8639–8640.
  • Trokhymchuk A, Alejandre J. Computer simulations of liquid/vapor interface in Lennard-Jones fluids: some questions and answers. J Chem Phys. 1999;111:8510–8523.
  • Lopez-Lemus J, Alejandre J. Thermodynamic and transport properties of simple fluids using lattice sums: bulk phases and liquid--vapour interface. Mol Phys. 2002;100:2983–2992.
  • Neumann M, Steinhauser O. The influence of boundary conditions used in machine simulations on the structure of polar systems. Mol Phys. 1980;39:437–454.
  • Alper HE, Levy RM. Computer simulations of the dielectric properties of water: studies of the simple point charge and transferrable intermolecular potential models. J Chem Phys. 1989;91:1242–1251.
  • Kitchen D, Hirata F, Westbrook J, et al. Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water. J Comput Chem. 1990;11:1169–1180.
  • Tasaki K, McDonald S, Brady J. Observations concerning the treatment of long-range interactions in molecular dynamics simulations. J Comput Chem. 1993;14:278–284.
  • Smith PE, van Gunsteren WF. Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J Chem Phys. 1994;100:3169–3174.
  • Feller S, Pastor R, Rojnuckarin A, et al. Effect of electrostatic force truncation on interfacial and transport properties of water. J Phys Chem. 1996;100:17011–17020.
  • van der Spoel D, van Maaren PJ, Berendsen HJ. A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys. 1998;108:10220–10230.
  • Mark P, Nilsson L. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations. J Comput Chem. 2002;23:1211–1219.
  • Yonetani Y. A severe artifact in simulation of liquid water using a long cut-off length: appearance of a strange layer structure. Chem Phys Lett. 2005;406:49–53.
  • van der Spoel D, van Maaren P. The origin of layer structure artifacts in simulations of liquid water. J Chem Theory Comput. 2006;2:1–11.
  • Yonetani Y. Liquid water simulation: a critical examination of cutoff length. J Chem Phys. 2006;124:204501.
  • Takahashi KZ. Truncation effects of shift function methods in bulk water systems. Entropy. 2013;15:3249–3264.
  • Loncharich R, Brooks B. The effects of truncating long-range forces on protein dynamics. Proteins: Struct Funct Bioinf. 1989;6:32–45.
  • Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry. 1992;31:5856–5860.
  • Schreiber H, Steinhauser O. Molecular dynamics studies of solvated polypeptides: why the cut-off scheme does not work. Chem Phys. 1992;168:75–89.
  • Schreiber H, Steinhauser O. Taming cut-off induced artifacts in molecular dynamics studies of solvated polypeptides* 1: the reaction field method. J Mol Biol. 1992;228:909–923.
  • Saito M. Molecular dynamics simulations of proteins in water without the truncation of long-range Coulomb interactions. Mol Simul. 1992;8:321–333.
  • Guenot J, Kollman P. Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J Comput Chem. 1993;14:295–311.
  • Saito M. Molecular dynamics simulations of proteins in solution: artifacts caused by the cutoff approximation. J Chem Phys. 1994;101:4055–4061.
  • Oda K, Miyagawa H, Kitamura K. How does the electrostatic force cut-off generate non-uniform temperature distributions in proteins? Mol Simul. 1996;16:167–177.
  • Norberg J, Nilsson L. On the truncation of long-range electrostatic interactions in dna. Biophys J. 2000;79:1537–1553.
  • Beck D, Armen R, Daggett V. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. Biochemistry. 2005;44:609–616.
  • Reif M, Kräutler V, Kastenholz M, et al. Molecular dynamics simulations of a reversibly folding β-heptapeptide in methanol: influence of the treatment of long-range electrostatic interactions. J Phys Chem B. 2009;113:3112–3128.
  • Mazars M. Long ranged interactions in computer simulations and for quasi-2d systems. Phys Rep. 2011;500:43–116.
  • Piana S, Lindorff-Larsen K, Dirks RM, et al. Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations. PLoS One. 2012;7:e39918.
  • Wu X, Brooks B. Isotropic periodic sum: A method for the calculation of long-range interactions. J Chem Phys. 2005;122:044107.
  • Wu X, Brooks B. Using the isotropic periodic sum method to calculate long-range interactions of heterogeneous systems. J Chem Phys. 2008;129:154115.
  • Wu X, Brooks B. Isotropic periodic sum of electrostatic interactions for polar systems. J Chem Phys. 2009;131:024107.
  • Ojeda-May P, Pu J. Assessing the accuracy of the isotropic periodic sum method through madelung energy computation. J Chem Phys. 2014;140:164106.
  • Takahashi K, Yasuoka K, Narumi T. Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid. J Chem Phys. 2007;127:114511.
  • Takahashi K, Narumi T, Yasuoka K. Cutoff radius effect of the isotropic periodic sum method in homogeneous system. ii. water. J Chem Phys. 2010;133:014109.
  • Takahashi K, Narumi T, Yasuoka K. Cut-off radius effect of the isotropic periodic sum method for polar molecules in a bulk water system. Mol Simul. 2012;38:397–403.
  • Nakamura H, Ohto T, Nagata Y. Polarizable site charge model at liquid/solid interfaces for describing surface polarity: application to structure and molecular dynamics of water/rutile tio2 (110) interface. J Chem Theory Comput. 2013;9:1193–1201.
  • Ohto T, Mishra A, Yoshimune S, et al. Influence of surface polarity on water dynamics at the water/rutile tio2 (110) interface. J Phys Condens Matter: Inst Phys J. 2014;26:244102–244102.
  • Klauda J, Wu X, Pastor R, et al. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method. J Phys Chem B. 2007;111:4393–4400.
  • Takahashi KZ, Narumi T, Yasuoka K. Cutoff radius effect of the isotropic periodic sum and wolf method in liquid--vapor interfaces of water. J Chem Phys. 2011;134:174112.
  • Nozawa T, Takahashi KZ, Kameoka S, et al. Application of isotropic periodic sum method for 4-pentyl-4’-cyanobiphenyl liquid crystal. Mol Simul. 2015;41:927–935.
  • Venable R, Chen L, Pastor R. Comparison of the extended isotropic periodic sum and particle mesh ewald methods for simulations of lipid bilayers and monolayers. J Phys Chem B. 2009;113:5855–5862.
  • Ojeda-May P, Pu J. Isotropic periodic sum treatment of long-range electrostatic interactions in combined quantum mechanical and molecular mechanical calculations. J Chem Theory Comput. 2014;10:134–145.
  • Lee J, Miller BT, Brooks BR. Computational scheme for ph-dependent binding free energy calculation with explicit solvent. Protein Sci. 2016;25:231–243.
  • Wu X, Lee J, Brooks BR. Origin of pka shifts of internal lysine residues in snase studied via equal-molar vmms simulations in explicit water. J Phys Chem B. 2016. Doi:10.1021/acs.jpcb.6b08249
  • Wu X, Brooks BR. A virtual mixture approach to the study of multistate equilibrium: application to constant ph simulation in explicit water. PLoS Comput Biol. 2015;11:e1004480.
  • Takahashi KZ, Narumi T, Yasuoka K. A combination of the tree-code and ips method to simulate large scale systems by molecular dynamics. J Chem Phys. 2011;135:174108.
  • Wu X, Pickard FC IV, Brooks BR. Isotropic periodic sum for multipole interactions and a vector relation for calculation of the cartesian multipole tensor. J Chem Phys. 2016;145:164110.
  • Takahashi KZ, Narumi T, Suh D, et al. An improved isotropic periodic sum method using linear combinations of basis potentials. J Chem Theory Comput. 2012;8:4503–4516.
  • Cisneros GA, Karttunen M, Ren P, et al. Classical electrostatics for biomolecular simulations. Chem Rev. 2014;114:779–814.
  • Takahashi KZ. Design of a reaction field using a linear-combination-based isotropic periodic sum method. J Comput Chem. 2014;35:865–875.
  • Takahashi KZ, Yasuoka K. A determination of liquid-vapour interfacial properties for methanol using a linear-combination-based isotropic periodic sum. Mol Simul. 2015;41:795–800.
  • Takahashi KZ. An improvement of truncation method by a novel reaction field: accurate computation for estimating methanol liquid--vapor interfacial systems. Comput Mater Sci. 2015;100:191–194.
  • Nozawa T, Takahashi KZ, Narumi T, et al. Comparison of the accuracy of periodic reaction field methods in molecular dynamics simulations of a model liquid crystal system. J Comput Chem. 2015;36:2406–2411.
  • Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J Chem Phys. 1992;97:1990–2001.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.