1,042
Views
31
CrossRef citations to date
0
Altmetric
Energy Applications

On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers

, &
Pages 838-849 | Received 11 Oct 2016, Accepted 27 Dec 2016, Published online: 03 Mar 2017

References

  • Bedrov D, Vatamanu J, Hu Z. Ionic liquids at charged surfaces: insight from molecular simulations. J Non-Cryst Solids. 2015;407:339–348.10.1016/j.jnoncrysol.2014.08.007
  • Xing L, Vatamanu J, Borodin O, et al. Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: a molecular dynamics simulation study. J Phys Chem C. 2012;116:23871–23881.10.1021/jp3054179
  • Feng G, Qiao R, Huang J, et al. The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Phys Chem Chem Phys. 2011;13:1152–1161.10.1039/C0CP02077J
  • Xu S, Xing S, Pei S-S, et al. Molecular response of 1-butyl-3-methylimidazolium dicyanamide ionic liquid at the graphene electrode interface investigated by sum frequency generation spectroscopy and molecular dynamics simulations. J Phys Chem C. 2015;119:26009–26019.10.1021/acs.jpcc.5b08736
  • Baldelli S. Interfacial structure of room-temperature ionic liquids at the solid–liquid interface as probed by sum frequency generation spectroscopy. J Phys Chem Lett. 2013;4:244–252.10.1021/jz301835j
  • Baldelli S, Mailhot G, Ross P, et al. Potential dependent orientation of acetonitrile on platinum (111) electrode surface studied by sum frequency generation. J Phys Chem B. 2001;105:654–662.10.1021/jp002546d
  • Rotenberg B, Salanne M. Structural transitions at ionic liquid interfaces. J Phys Chem Lett. 2015;6:4978–4985.10.1021/acs.jpclett.5b01889
  • Feng G, Li S, Atchison JS, et al. Molecular insights into carbon nanotube supercapacitors: capacitance independent of voltage and temperature. J Phys Chem C. 2013;117:9178–9186.10.1021/jp403547k
  • Vatamanu J, Xing L, Li W, et al. Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces. Phys Chem Chem Phys. 2014;16:5174–5182.10.1039/c3cp54705a
  • Lockett V, Horne M, Sedev R, et al. Differential capacitance of the double layer at the electrode/ionic liquids interface. Phys Chem Chem Phys. 2010;12:12499–12512.10.1039/c0cp00170h
  • Silva F, Gomes C, Figueiredo M, et al. The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface – effect of temperature on the differential capacitance. J Electroanal Chem. 2008;622:153–160.10.1016/j.jelechem.2008.05.014
  • Costa R, Pereira CM, Silva F. Double layer in room temperature ionic liquids: influence of temperature and ionic size on the differential capacitance and electrocapillary curves. Phys Chem Chem Phys. 2010;12:11125–11132.10.1039/c003920a
  • Siinor L, Arendi R, Lust K, et al. Influence of temperature on the electrochemical characteristics of Bi(1 1 1) ionic liquid interface. J Electroanal Chem. 2013;689:51–56.10.1016/j.jelechem.2012.11.018
  • Islam MM, Alam MT, Ohsaka T. Electrical double-layer structure in ionic liquids: a corroboration of the theoretical model by experimental results. J Phys Chem C. 2008;112:16568–16574.10.1021/jp8058849
  • Cannes C, Cachet H, Debiemme-Chouvy C, et al. Double layer at [bumeim][Tf2N] ionic liquid–Pt or −C material interfaces. J Phys Chem C. 2013;117:22915–22925.10.1021/jp407665q
  • Drüschler M, Borisenko N, Wallauer J, et al. New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics. Phys Chem Chem Phys. 2012;14:5090–5099.10.1039/c2cp40288b
  • Feng G, Huang J, Sumpter BG, et al. Structure and dynamics of electrical double layers in organic electrolytes. Phys Chem Chem Phys. 2010;12:5468–5479.10.1039/c000451k
  • Vatamanu J, Borodin O, Smith GD. Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for N -methyl- N -propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes. J Phys Chem B. 2011;115:3073–3084.10.1021/jp2001207
  • Costa R, Pereira CM, Fernando Silva A. Structural ordering transitions in ionic liquids mixtures. Electrochem Commun. 2015;57:10–13.10.1016/j.elecom.2015.04.012
  • Gomes C, Costa R, Pereira CM, et al. The electrical double layer at the ionic liquid/Au and Pt electrode interface. RSC Adv. 2014;4:28914–28921.10.1039/C4RA03977G
  • Ho TA, Striolo A. Capacitance enhancement via electrode patterning. J Chem Phys. 2013;139:204708.10.1063/1.4833316
  • Vatamanu J, Cao L, Borodin O, et al. On the influence of surface topography on the electric double layer structure and differential capacitance of graphite/ionic liquid interfaces. J Phys Chem Lett. 2011;2:2267–2272.10.1021/jz200879a
  • Xing L, Vatamanu J, Smith GD, et al. Nanopatterning of electrode surfaces as a potential route to improve the energy density of electric double-layer capacitors: insight from molecular simulations. J Phys Chem Lett. 2012;3:1124–1129.10.1021/jz300253p
  • Costa R, Pereira CM, Silva AF. Charge storage on ionic liquid electric double layer: the role of the electrode material. Electrochim Acta. 2015;167:421–428.10.1016/j.electacta.2015.02.180
  • Tazi S, Salanne M, Simon C, et al. Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. J Phys Chem B. 2010;114:8453–8459.10.1021/jp1030448
  • Vatamanu J, Hu Z, Bedrov D, et al. Increasing energy storage in electrochemical capacitors with ionic liquid electrolytes and nanostructured carbon electrodes. J Phys Chem Lett. 2013;4:2829–2837.10.1021/jz401472c
  • Feng G, Cummings PT. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J Phys Chem Lett. 2011;2:2859–2864.10.1021/jz201312e
  • Vatamanu J, Vatamanu M, Bedrov D. Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes. ACS Nano. 2015;9:5999–6017.10.1021/acsnano.5b00945
  • Kondrat S, Georgi N, Fedorov MV, et al. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys Chem Chem Phys. 2011;13:11359–11366.10.1039/c1cp20798a
  • Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. 2008;130:2730–2731.10.1021/ja7106178
  • Lin R, Taberna PL, Chmiola J, et al. Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors. J Electrochem Soc. 2009;156:A7–A12.10.1149/1.3002376
  • Merlet C, Péan C, Rotenberg B, et al. Highly confined ions store charge more efficiently in supercapacitors. Nat Commun. 2013;4: Article No: 2701.
  • Merlet C, Rotenberg B, Madden PA, et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater. 2012;11:306–310.10.1038/nmat3260
  • Vatamanu J, Ni X, Liu F, et al. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors. Nanotechnology. 2015;26:464001.10.1088/0957-4484/26/46/464001
  • Vatamanu J, Borodin O, Smith GD. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential. J Phys Chem C. 2011;116:1114–1121.
  • Fedorov MV, Kornyshev AA. Ionic liquids at electrified interfaces. Chem Rev. 2014;114:2978–3036.10.1021/cr400374x
  • Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–6426.10.1021/cr500411q
  • Merlet C, Rotenberg B, Madden PA, et al. Computer simulations of ionic liquids at electrochemical interfaces. Phys Chem Chem Phys. 2013;15:15781–15792.10.1039/c3cp52088a
  • Vatamanu J, Bedrov D. Capacitive energy storage: current and future challenges. J Phys Chem Lett. 2015;6:3594–3609.10.1021/acs.jpclett.5b01199
  • Kornyshev AA. The simplest model of charge storage in single file metallic nanopores. Faraday Discuss. 2013;164:117–133.10.1039/c3fd00026e
  • Lee AA, Kondrat S, Kornyshev AA. Single-file charge storage in conducting nanopores. Phys Rev Lett. 2014;113:048701.10.1103/PhysRevLett.113.048701
  • Kondrat S, Kornyshev A. Superionic state in double-layer capacitors with nanoporous electrodes. J Phys: Condens Matter. 2011;23:022201.
  • Borodin O, Smith GD. Development of many−body polarizable force fields for Li-battery components: 1. ether, alkane, and carbonate-based solvents. J Phys Chem B. 2006;110:6279–6292.10.1021/jp055079e
  • Borodin O, Smith GD, Henderson W. Li + cation environment, transport, and mechanical properties of the LiTFSI doped N -methyl- N -alkylpyrrolidinium + TFSI - ionic liquids. J Phys Chem B. 2006;110:16879–16886.10.1021/jp061930t
  • Borodin O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B. 2009;113:11463–11478.10.1021/jp905220k
  • He Y, Qiao R, Vatamanu J, et al. Importance of ion packing on the dynamics of ionic liquids during micropore charging. J Phys Chem Lett. 2016;7:36–42.10.1021/acs.jpclett.5b02378
  • Kornyshev AA. Double-layer in ionic liquids: paradigm change? J Phys Chem B. 2007;111:5545–5557.10.1021/jp067857o
  • Oldham KB. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J Electroanal Chem. 2008;613:131–138.10.1016/j.jelechem.2007.10.017
  • Gouy G. Constitution of the electric charge at the surface of an electrolyte. Compt Rend. 1910;149:654.
  • Pastewka L, Järvi TT, Mayrhofer L, et al. Charge-transfer model for carbonaceous electrodes in polar environments. Phys Rev B. 2011;83:165418.10.1103/PhysRevB.83.165418
  • Siepmann JI, Sprik M. Influence of surface topology and electrostatic potential on water/electrode systems. J Chem Phys. 1995;102:511–524.10.1063/1.469429
  • Reed SK, Lanning OJ, Madden PA. Electrochemical interface between an ionic liquid and a model metallic electrode. J Chem Phys. 2007;126:084704.10.1063/1.2464084
  • Kiss PT, Sega M, Baranyai A. Efficient handling of Gaussian charge distributions: an application to polarizable molecular models. J Chem Theory Comput. 2014;10:5513–5519.10.1021/ct5009069
  • Wang Z, Yang Y, Olmsted DL, et al. Evaluation of the constant potential method in simulating electric double-layer capacitors. J Chem Phys. 2014;141:184102.10.1063/1.4899176
  • Golze D, Iannuzzi M, Nguyen M-T, et al. Simulation of adsorption processes at metallic interfaces: an image charge augmented QM/MM approach. J Chem Theory Comput. 2013;9:5086–5097.10.1021/ct400698y
  • Ewald PP. The computation of optical and electrostatic lattice potentials. Ann Phys. 1921;64:253–287.10.1002/(ISSN)1521-3889
  • Heyes DM, Clarke JHR. Computer simulation of molten-salt interphases. Effect of a rigid boundary and an applied electric field. J Chem Soc Faraday Trans 2. 1981;77:1089–1100.10.1039/f29817701089
  • Heyes DM. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. Phys Rev B. 1994;49:755–764.10.1103/PhysRevB.49.755
  • Yeh I-C, Berkowitz ML. Ewald summation for systems with slab geometry. J Chem Phys. 1999;111:3155–3162.10.1063/1.479595
  • Haskins JB, Bauschlicher CW, Lawson JW. Ab initio simulations and electronic structure of lithium-doped ionic liquids: structure, transport, and electrochemical stability. J Phys Chem B. 2015;119:14705–14719.10.1021/acs.jpcb.5b06951
  • Haskins JB, Lawson JW. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers. J Chem Phys. 2016;144:184707.10.1063/1.4948938
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.10.1063/1.470117
  • Kawata M, Mikami M, Nagashima U. Computationally efficient method to calculate the Coulomb interactions in three-dimensional systems with two-dimensional periodicity. J Chem Phys. 2002;116:3430–3448.10.1063/1.1445103
  • Kawata M, Mikami M. Rapid calculation of two-dimensional Ewald summation. Chem Phys Lett. 2001;340:157–164.10.1016/S0009-2614(01)00378-5
  • Kawata M, Nagashima U. Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem Phys Lett. 2001;340:165–172.10.1016/S0009-2614(01)00393-1
  • Kawata M, Mikami M, Nagashima U. Rapid calculation of the Coulomb component of the stress tensor for three-dimensional systems with two-dimensional periodicity. J Chem Phys. 2001;115:4457–4462.10.1063/1.1395564
  • Vatamanu J, Borodin O, Smith GD. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Phys Chem Chem Phys. 2010;12:170–182.10.1039/B917592J
  • Vatamanu J, Borodin O, Bedrov D, et al. Molecular dynamics simulation study of the interfacial structure and differential capacitance of alkylimidazolium bis(trifluoromethanesulfonyl)imide [Cnmim][TFSI] ionic liquids at graphite electrodes. J Phys Chem C. 2012;116:7940–7951.10.1021/jp301399b
  • Hu Z, Vatamanu J, Borodin O, et al. A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes. Electrochim Acta. 2014;145:40–52.10.1016/j.electacta.2014.08.072
  • Vatamanu J, Vatamanu M, Borodin O, et al. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. J Phys: Condens Matter. 2016;28:464002.
  • Merlet C, Salanne M, Rotenberg B, et al. Influence of solvation on the structural and capacitive properties of electrical double layer capacitors. Electrochim Acta. 2013;101:262–271.10.1016/j.electacta.2012.12.107
  • Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006;313:1760–1763.10.1126/science.1132195
  • Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–854.10.1038/nmat2297
  • Xing L, Vatamanu J, Borodin O, et al. On the atomistic nature of capacitance enhancement generated by ionic liquid electrolyte confined in subnanometer pores. J Phys Chem Lett. 2012;4:132–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.