105
Views
5
CrossRef citations to date
0
Altmetric
Articles

Free-energy landscapes of the coupled conformational transition and inclusion processes of altro-cyclodextrins

, &
Pages 977-984 | Received 23 Nov 2016, Accepted 16 Feb 2017, Published online: 09 Mar 2017

References

  • Miyawaki A, Kuad P, Takashima Y, et al. Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. J Am Chem Soc. 2008;130:17062–17069.10.1021/ja806620z
  • Yamauchi K, Miyawaki A, Takashima Y, et al. A molecular reel: shuttling of a rotor by tumbling of a macrocycle. J Org Chem. 2010;75:1040–1046.10.1021/jo902393n
  • Yamauchi K, Miyawaki A, Takashima Y, et al. Switching from altro-α-cyclodextrin dimer to pseudo[1]rotaxane dimer through tumbling. Org Lett. 2010;12:1284–1286.10.1021/ol1001736
  • Fukudome M, Oiwane K, Mori T, et al. Selective modification of mono-altro-β-cyclodextrin: dependence of O-sulfonylation position on the shape of sulfonylating reactant. Tetrahedron Lett. 2004;45:3383–3386.10.1016/j.tetlet.2004.03.018
  • Fujita K, Fukudome M, Yuan DQ. Flexible cyclooligosaccharides: guest-binding and regio-selective modification. J Inclusion Phenom Mol Recognit Chem. 2002;44:323–328.10.1023/A:1023085816630
  • Fujita K, Chen WH, Oiwane K, et al. Selective mono-O-sulfonylation of A, B-di-altro-β-cyclodextrin by utilizing restricted orientation of a guest-type sulfonylating reactant in the elliptically distorted cavity: the 2A-O- and 3G-O-2-naphthalenesulfonates as a versatile scaffold to prepare artificial enzymes with controlling substrate orientation. Tetrahedron Lett. 2004;45:6899–6902.10.1016/j.tetlet.2004.07.089
  • Fujita K, Ohta K, Ikegami Y, et al. General method for preparing altrosides from 2,3-manno-epoxides and its application to synthesis of alternative β-cyclodextrin with an altroside as the constituent of macrocyclic structure. Tetrahedron Lett. 1994;35:9577–9580.10.1016/0040-4039(94)88515-X
  • Chen WH, Fukudome M, Yuan DQ, et al. Restriction of guest rotation based on the distortion of a cyclodextrin cavity. Chem Commun. 2000;541–542.
  • Fujita K, Chen WH, Yuan DQ, et al. Guest-induced conformational change in a flexible host: mono-altro-β-cyclodextrin. Tetrahedron: Asymmetry. 1999;10:1689–1696.10.1016/S0957-4166(99)00127-5
  • Hakkarainen B, Fujita K, Immel S, et al. 1H NMR studies on the hydrogen-bonding network in mono-altro-β-cyclodextrin and its complex with adamantane-1-carboxylic acid. Carbohydr Res. 2005;340:1539–1545.10.1016/j.carres.2005.03.016
  • Oshikiri T, Yamaguchi H, Takashima Y, et al. Face selective translation of a cyclodextrin ring along an axle. Chem Commun. 2009;5515–5517.
  • Wang SS, Zhao TF, Shao XG, et al. Complex movements in rotaxanes: shuttling coupled with conformational transition of cyclodextrins. J Phys Chem C. 2016;120:19479–19486.10.1021/acs.jpcc.6b06948
  • Hingerty B, Saenger W. Topography of cyclodextrin inclusion complexes. 8. Crystal and molecular structure of the α-cyclodextrin-methanol-pentahydrate complex. Disorder in a hydrophobic cage. J Am Chem Soc. 1976;98:3357–3365.10.1021/ja00427a050
  • Schmidt AK, Cottaz S, Driguez H, et al. Structure of cyclodextrin glycosyltransferase complexed with a derivative of its main product beta-cyclodextrin. Biochemistry. 1998;37:5909–5915.10.1021/bi9729918
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.10.1002/(ISSN)1096-987X
  • Guvench O, Hatcher E, Venable RM, et al. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput. 2009;5:2353–2370.10.1021/ct900242e
  • Raman EP, Guvench O, MacKerell AD. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J Phys Chem B. 2010;114:12981–12994.10.1021/jp105758h
  • Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31:671–690.
  • Yu W, He X, Vanommeslaeghe K, et al. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem. 2012;33:2451–2468.10.1002/jcc.v33.31
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.10.1063/1.445869
  • Feller SE, Zhang Y, Pastor RW, et al. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys. 1995;103:4613–4621.10.1063/1.470648
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–341.10.1016/0021-9991(77)90098-5
  • Andersen HC. Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys. 1983;52:24–34.10.1016/0021-9991(83)90014-1
  • Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13:952–962.10.1002/(ISSN)1096-987X
  • Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J Chem Phys. 1992;97:1990–2001.10.1063/1.463137
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J Mol Graphics. 1996;14:33–38.10.1016/0263-7855(96)00018-5
  • Minoukadeh K, Chipot C, Lelièvre T. Potential of mean force calculations: a multiple-walker adaptive biasing force approach. J Chem Theory Comput. 2010;6:1008–1017.10.1021/ct900524t
  • Comer J, Phillips JC, Schulten K, et al. Multiple-replica strategies for free-energy calculations in NAMD: multiple-walker adaptive biasing force and walker selection rules. J Chem Theory Comput. 2014;10:5276–5285.10.1021/ct500874p
  • Hénin J, Fiorin G, Chipot C, et al. Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput. 2010;6:35–47.10.1021/ct9004432
  • Ensing B, Laio A, Parrinello M, et al. A recipe for the computation of the free energy barrier and the lowest free energy path of concerted reactions. J Phys Chem B. 2005;109:6676–6687.10.1021/jp045571i
  • Flyvbjerg H, Petersen HG. Error estimates on averages of correlated data. J Chem Phys. 1989;91:461–466.
  • Cremer D, Pople JA. General definition of ring puckering coordinates. J Am Chem Soc. 1975;97:1354–1358.10.1021/ja00839a011
  • Schwarz JCP. Rules for conformation nomenclature for five- and six-membered rings in monosaccharides and their derivatives. J Chem Soc. Chem Commun. 1973;505–508.10.1039/c39730000505
  • IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Conformational nomenclature for five and six-membered ring forms of monosaccharides and their derivatives. Eur J Biochem. 1980;111:295–298.
  • Liu Y, Chipot C, Shao XG, et al. Threading or tumbling? insight into the self-inclusion mechanism of an altro-α-cyclodextrin derivative. J Phys Chem C. 2014;118:19380–19386.10.1021/jp503866q

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.