224
Views
1
CrossRef citations to date
0
Altmetric
Energy Applications

Computer simulations of self-assembled energy materials

&
Pages 797-807 | Received 28 Nov 2016, Accepted 08 Mar 2017, Published online: 10 Apr 2017

References

  • New science for a secure and sustainable energy future, US Department of Energy Office of Science. 2008.
  • Computational materials science and chemistry: accelerating discovery and innovation through simulation-based engineering and science, US Department of Energy Office of Science. 2010.
  • Notter DA, Kouravelou K, Karachalios T, et al. Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy Environ Sci. 2015;8:1969–1985. DOI:10.1039/c5ee01082a
  • Whitesides GM. Self-assembly at all scales. Science. 2002;295:2418–2421. DOI:10.1126/science.1070821
  • Grzybowski BA, Wilmer CE, Kim J, et al. Self-assembly: from crystals to cells. Soft Matter. 2009;5:1110. DOI:10.1039/b819321p
  • Boles MA, Engel M, Talapin DV. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev. 2016;116:11220–11289. DOI:10.1021/acs.chemrev.6b00196
  • Lo WY, Zhang N, Cai Z, et al. Beyond molecular wires: design molecular electronic functions based on dipolar effect. Acc Chem Res. 2016;49:1852–1863. DOI:10.1021/acs.accounts.6b00305
  • Balasubramanian V, Herranz-Blanco B, Almeida PV, et al. Multifaceted polymersome platforms: spanning from self-assembly to drug delivery and protocells. Prog Polym Sci. 2016;60:51–85. DOI:10.1016/j.progpolymsci.2016.04.004
  • Whitesides G, Mathias J, Seto C. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science. 1991;254:1312–1319.
  • Klapp SH. Collective dynamics of dipolar and multipolar colloids: from passive to active systems. Curr Opin Colloid Interface Sci. 2016;21:76–85. DOI:10.1016/j.cocis.2016.01.004
  • Goiri E, Borghetti P, El-Sayed A, et al. Multi-component organic layers on metal substrates. Adv Mater. 2015;28:1340–1368. DOI:10.1002/adma.201503570
  • Heller LE, Whitleigh J, Roth DF, et al. Self-assembly of isomeric monofunctionalized thiophenes. Langmuir. 2012;28:14855–14859. DOI:10.1021/la3031733
  • Xu L, Miao X, Ying X, et al. Two-dimensional self-assembled molecular structures formed by the competition of van der waals forces and dipole-dipole interactions. J Phys Chem C. 2012;116:1061–1069. DOI:10.1021/jp210000e
  • Pivetta M, Blum MC, Patthey F, et al. Two-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a au(111) surface. Angew Chem Int Ed. 2008;47:1076–1079. DOI:10.1002/anie.200704479
  • Pivetta M, Blum MC, Patthey F, et al. Coverage-dependent self-assembly of rubrene molecules on noble metal surfaces observed by scanning tunneling microscopy. ChemPhysChem. 2010;11:1558–1569. DOI:10.1002/cphc.200900846
  • Liu Z, Guo R, Xu G, et al. Entropy-mediated mechanical response of the interfacial nanoparticle patterning. Nano Lett. 2014;14:6910–6916. DOI:10.1021/nl5029396
  • Xu K, Guo R, Dong B, et al. Directed self-assembly of janus nanorods in binary polymer mixture: towards precise control of nanorod orientation relative to interface. Soft Matter. 2012;8:9581–9588. DOI:10.1039/c2sm26193f
  • Yan LT, Schoberth HG, Böker A. Lamellar microstructure and dynamic behavior of diblock copolymer/nanoparticle composites under electric fields. Soft Matter. 2010;6:5956–5964. DOI:10.1039/c0sm00184h
  • Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96:1533–1554.
  • Hatzor A, Moav T, Cohen H, et al. Coordination-controlled self-assembled multilayers on gold. J Am Chem Soc. 1998;120:13469–13477. DOI:10.1021/ja9828307
  • Krishnan RS, Mackay ME, Duxbury PM, et al. Self-assembled multilayers of nanocomponents. Nano Lett. 2007;7:484–489. DOI:10.1021/nl062866u
  • Desikan R, Armel S, Meyer III HM, et al. Effect of chain length on nanomechanics of alkanethiol self-assembly. Nanotechnology. 2007;18:424028. DOI:10.1088/0957-4484/18/42/424028
  • Jaccob M, Rajaraman G, Totti F. On the kinetics and thermodynamics of s-x (x = h, CH3, SCH3, COCH3, and CN) cleavage in the formation of self-assembled monolayers of alkylthiols on au(111). Theor Chem Acc. 2012;131:1–11. 1150. DOI:10.1007/s00214-012-1150-x
  • Felhosi I, Kalman E, Poczik P. Russ J Electrochem. 2002;38:230–237. DOI:10.1023/A:1014718320345
  • Laibinis PE, Whitesides GM. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J Am Chem Soc. 1992;114:9022–9028.
  • Heinemann N, Grunau J, Leißner T, et al. Reversible switching in self-assembled monolayers of azobenzene thiolates on au (111) probed by threshold photoemission. Chem Phys. 2012;402:22–28. DOI:10.1016/j.chemphys.2012.03.025
  • Wang L, Kong H, Song X, et al. Chiral supramolecular self-assembly of rubrene. Phys Chem Chem Phys. 2010;12:14682–14685. DOI:10.1039/C0CP00512F
  • Verbiest T, van Elshocht S, Kauranen M, et al. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science. 1998;282:913–915.
  • Srebro M, Anger E, Moore II B, et al. Ruthenium-grafted vinylhelicenes: chiroptical properties and redox switching. Chem - A Eur J. 2015;21:17100–17115. DOI:10.1002/chem.201502237
  • Liu M, Zhang L, Wang T. Supramolecular chirality in self-assembled systems. Chem Rev. 2015;115:7304–7397. DOI:10.1021/cr500671p
  • Gross E, Liu JH, Alayoglu S, et al. Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions. J Am Chem Soc. 2013;135:3881–3886. DOI:10.1021/ja310640b
  • Wu X, Ma X, Ji Y, et al. Synthesis and characterization of a novel type of self-assembled chiral zirconium phosphonates and its application for heterogeneous asymmetric catalysis. J Mol Catal A Chem. 2007;265:316–322. DOI:10.1016/j.molcata.2006.10.022
  • Yutthalekha T, Wattanakit C, Lapeyre V, et al. Asymmetric synthesis using chiral-encoded metal. Nat Commun. 2016;7:1–8. 12678. DOI:10.1038/ncomms12678
  • Tamura M, Kishi R, Nakagawa Y, et al. Self-assembled hybrid metal oxide base catalysts prepared by simply mixing with organic modifiers. Nat Commun. 2015;6:1–9. 8580. DOI:10.1038/ncomms9580
  • Feringa BL, van Delden RA, Koumura N, et al. Chiroptical molecular switches. Chem Rev. 2000;100:1789–1816. DOI:10.1021/cr9900228
  • van Delden RA, ter Wiel MKJ, Pollard MM, et al. Unidirectional molecular motor on a gold surface. Nature. 2005;437:1337–1340. DOI:10.1038/nature04127.
  • Kistemaker JCM, Štacko P, Visser J, et al. Unidirectional rotary motion in achiral molecular motors. Nature Chem. 2015;7:890–896. DOI:10.1038/nchem.2362
  • Popa T, Paci I. Designing enantioselectivity in chiral self-assembly at a solid substrate: a theoretical study of competing interactions. Soft Matter. 2013;9:7988–7998. DOI:10.1039/c3sm50312g
  • Popa T, Paci I. Surface effects in chiral adsorption. Chem Phys Lett. 2011;507:128–133. DOI:10.1016/j.cplett.2011.03.060
  • Frenkel D, Smit B. Understanding molecular simulation from algorithms to applications. San Diego (CA): Academic Press; 2002.
  • Chapman CRL, Ting EC, Kereszti A, et al. Self-assembly of cysteine dimers at the gold surface: a computational study of competing interactions. J Phys Chem C. 2013;117:19426–19435. DOI:10.1021/jp405478n
  • Ting ECM, Popa T, Paci I. Surface-site reactivity in small-molecule adsorption: a theoretical study of thiol binding on multi-coordinated gold clusters. Beilstein J Nanotechnol. 2016;7:53–61. DOI:10.3762/bjnano.7.6
  • A good overview is given in Sherrill D. Counterpoise correction and basis set superposition errror. :http://vergil.chemistry.gatech.edu/notes/.
  • Lee K, Yu J, Morikawa Y. Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals. Phys Rev B. 2007;75:045402-1–045402-5.
  • Paci I, Szleifer I, Ratner MA. Structural behavior and self-assembly of lennard-jones clusters on rigid surfaces. J Phys Chem B. 2005;109:12935–12945. DOI:10.1021/jp0507849
  • van Blaaderen A, Ruel R, Wiltzius P. Template-directed colloidal crystallization. Nature. 1997;01(385):321–324. DOI:10.1038/385321a0
  • Vlasov YA, Bo XZ, Sturm JC, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature. 2001;414:289–293. DOI:10.1038/35104529
  • Dziomkina NV, Hempenius MA, Vancso GJ. Layer-by-layer templated growth of colloidal crystals with packing and pattern control. Colloids Surf A. 2009;342:8–15. Available from: http://www.sciencedirect.com/science/article/pii/S0927775709001356
  • Tuca E, Paci I. Fundamental aspects in surface self-assembly: theoretical implications of molecular polarity and shape. Phys Chem Chem Phys. 2016;18:6498–6508. DOI:10.1039/c5cp04479k
  • Kunkel DA, Hooper J, Simpson S, et al. Self-assembly of strongly dipolar molecules on metal surfaces. J Chem Phys. 2015;142:1–9. 101921. DOI:10.1063/1.4907943
  • Camillone N, Eisenberger P, Leung TYB, et al. New monolayer phases of n-alkane thiols self-assembled on au(111): preparation, surface characterization, and imaging. J Chem Phys. 1994;101:11031–11036. DOI:10.1063/1.467854
  • Ulman A, Eilers JE, Tillman N. Packing and molecular orientation of alkanethiol monolayers on gold surfaces. Langmuir. 1989;5:1147–1152. DOI:10.1021/la00089a003
  • Evans SD, Urankar E, Ulman A, et al. Self-assembled monolayers of alkanethiols containing a polar aromatic group: effects of the dipole position on molecular packing, orientation, and surface wetting properties. J Am Chem Soc. 1991;113:4121–4131. DOI:10.1021/ja00011a010
  • Paci I, Szleifer I, Ratner MA. Chiral separation: mechanism modeling in two-dimensional systems. J Am Chem Soc. 2007;129:3545–3555. DOI:10.1021/ja066422b
  • Paci I. Resolution of binary enantiomeric mixtures in two dimensions. J Phys Chem C. 2010;114:19425–19432. DOI:10.1021/jp107326c
  • Paci I, Szleifer I, Ratner MA. Chirality on surfaces modelling and behaviour. Chimica Oggi/Chemistry Today. 2007;25:18–21.
  • Barlow SM, Raval R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf Sci Rep. 2003;50:201–341.
  • Kuhnle A. Self-assembly of organic molecules at metal surfaces. Curr Opin Colloid Interface Sci. 2009;14:157–168.
  • Askerka M, Pichugina D, Kuz’menko N, et al. Theoretical prediction of sh bond rupture in methanethiol upon interaction with gold. J Phys Chem A. 2012;116:7686–7692.
  • Kuhnle A, Linderoth TR, Besenbacher F. Self-assembly of monodispersed, chiral nanoclusters of cysteine on the au(110)-(1x2) surface. J Am Chem Soc. 2003;125:14680–14681.
  • Kühnle A, Linderoth TR, Schunack M, et al. L-cysteine adsorption structures on au(111) investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. Langmuir. 2006;22:2156–2160.
  • Di Felice R, Selloni A. Adsorption modes of cysteine on au(111): thiolate, amino-thiolate, disulfide. J Chem Phys. 2004;120:4906–4914.
  • Kuhnle A, Linderoth TR, Hammer B, et al. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunneling microscopy. Nature. 2002;415:891–893.
  • Gronbeck H, Curioni A, Andreoni W. Thiols and disulfide on the au(111) surface: the headgroup-gold interaction. J Am Chem Soc. 2000;122:3839–3842.
  • Kühnle A, Linderoth TR, Besenbacher F. Chiral symmetry breaking observed for cysteine on the au(110)-(1x2) surface. Top Catal. 2011;54:1384–1391. DOI:10.1007/s11244-011-9765-z
  • Popa T, Ting EC, Paci I. Chiral effects in amino acid adsorption on au(111): a comparison of cysteine, homocysteine and methionine. Surf Sci. 2014;629:20–27. DOI:10.1016/j.susc.2014.01.018
  • Booth TD, Wahnon D, Wainer IW. Is chiral recognition a three-point process? Chirality. 1997;9:96–98.
  • Zhang C, Du MH, Cheng HP, et al. Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys Rev Lett. 2004;92:1–4. 158301. DOI:10.1103/PhysRevLett.92.158301
  • Liu ZF, Hashimoto K, Fujishima A. Photoelectrochemical information storage using an azobenzene derivative. Nature. 1990;347:658–660. DOI:10.1038/347658a0
  • Ikeda T, Tsutsumi O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science. 1995;268:1873–1875. DOI:10.1126/science.268.5219.1873
  • Yu Y, Nakano M, Ikeda T. Photomechanics: Directed bending of a polymer film by light. Nature. 2003;425:145–145. DOI:10.1038/425145a
  • Hugel T, Holland N, Cattani A, et al. Single-molecule optomechanical cycle. Science. 2002;296:1103–1106. DOI:10.1126/science.1069856
  • Tamai N, Miyasaka H. Ultrafast dynamics of photochromic systems. Chem Rev. 2000;100:1875–1890. DOI:10.1021/cr9800816
  • Cattaneo P, Persico M. An ab initio study of the photochemistry of azobenzene. Phys Chem Chem Phys. 1999;1:4739–4743. DOI:10.1039/A905055H
  • Ishikawa T, Noro T, Shoda T. Theoretical study on the photoisomerization of azobenzene. J Chem Phys. 2001;115:7503–7512. DOI:10.1063/1.1406975
  • Cembran A, Bernardi F, Garavelli M, et al. On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene. J Am Chem Soc. 2004;126:3234–3243. DOI:10.1021/ja038327y
  • Diau EWG. A new trans-to-cis photoisomerization mechanism of azobenzene on the s1 surface. J Phys Chem A. 2004;108:950–956. DOI:10.1021/jp031149a
  • Levy N, Comstock MJ, Cho J, et al. Self-patterned molecular photoswitching in nanoscale surface assemblies. Nano Lett. 2009;9:935–939. DOI:10.1021/nl802632g
  • Comstock MJ, Levy N, Kirakosian A, et al. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys Rev Lett. 2007;99:1–4. 038301. DOI:10.1103/PhysRevLett.99.038301
  • Kumar AS, Ye T, Takami T, et al. Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. Nano Lett. 2008;8:1644–1648.
  • Weidner T, Bretthauer F, Ballav N, et al. Correlation between the molecular structure and photoresponse in aliphatic self-assembled monolayers with azobenzene tailgroups. Langmuir. 2008;24:11691–11700. DOI:10.1021/la802454w
  • Morgenstern K. Isomerization reactions on single adsorbed molecules. Acc Chem Res. 2009;42:213–223.
  • Katsonis N, Lubomska M, Pollard MM, et al. Synthetic light-activated molecular switches and motors on surfaces. Prog Surf Sci. 2007;82:407.
  • Alemani M, Peters MV, Hecht S, et al. Electric field-induced isomerization of Azobenzene by STM. J Am Chem Soc. 2006;128:14446.
  • Evans SD, Johnson SR, Ringsdorf H, et al. Photoswitching of azobenzene derivatives formed on planar and colloidal gold surfaces. Langmuir. 1998;14:6436–6440. DOI:10.1021/la980450t
  • Elbing M, Blaszczyk A, von Hanisch C, et al. Single component self-assembled monolayers of aromatic azo-biphenyl: influence of the packing tightness on the SAM structure and light-induced molecular movements. Adv Funct Mater. 2008;18:2972–2983. DOI:10.1002/adfm.200800652\newpage
  • Hagen S, Kate P, Leyssner F, et al. Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: role of the metallic substrate. J Chem Phys. 2008;129:164102. DOI:10.1063/1.2997343
  • Chapman C, Paci I. Conformational behavior of chemisorbed azobenzene derivatives in external electric fields: a theoretical study. J Phys Chem C. 2010;114:20556–20563. DOI:10.1021/jp104967e
  • Chapman C, Paci I. Behavior of a chemisorbed azobenzene derivative in an STM environment: a DFT study of charged states and electric fields. Chem Phys Lett. 2011;517:204–210. DOI:10.1016/j.cplett.2011.10.047
  • Chapman CRL, Paci I. Mean-field theoretical study of bistability in mixed azobenzene-alkylthiol monolayers. J Phys Chem C. 2010;114:2645–2654. DOI:10.1021/jp909325d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.