447
Views
18
CrossRef citations to date
0
Altmetric
Articles

Comparison of computational model and X-ray crystal structure of human serotonin transporter: potential application for the pharmacology of human monoamine transporters

, , , , , , , , & show all
Pages 1089-1098 | Received 21 Jan 2017, Accepted 16 Mar 2017, Published online: 16 May 2017

References

  • Zheng G, Xue W, Wang P, et al. Exploring the inhibitory mechanism of approved selective norepinephrine reuptake inhibitors and reboxetine enantiomers by molecular dynamics study. Sci Rep. 2016;6:26883.10.1038/srep26883
  • Kaplan C, Zhang Y. Assessing the comparative-effectiveness of antidepressants commonly prescribed for depression in the US Medicare population. J Ment Health Policy Econ. 2012;15:171–178.
  • Lopez-Munoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009;15:1563–1586.10.2174/138161209788168001
  • Li YH, Wang PP, Li XX, et al. The human kinome targeted by FDA approved multi-target drugs and combination products: a comparative study from the drug-target interaction network perspective. PLOS ONE. 2016;11:1–15.
  • Xu J, Wang P, Yang H, et al. Comparison of FDA approved kinase targets to clinical trial ones: insights from their system profiles and drug-target interaction networks. BioMed Res Int. 2016;2016:2509385.
  • Marazziti D, Landi P, Baroni S, et al. The role of platelet/lymphocyte serotonin transporter in depression and beyond. Curr Drug Targets. 2013;14:522–530.10.2174/1389450111314050003
  • Petersen CI, DeFelice LJ. Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci. 1999;2:605–610.
  • Zhu F, Shi Z, Qin C, et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 2012;40:D1128–D1136.10.1093/nar/gkr797
  • Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–339.10.1038/nature17629
  • Andersen J, Olsen L, Hansen KB, et al. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem. 2010;285:2051–2063.
  • Andersen J, Stuhr-Hansen N, Zachariassen LG, et al. Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (prozac). Mol Pharmacol. 2014;85:703–714.10.1124/mol.113.091249
  • Andersen J, Taboureau O, Hansen KB, et al. Location of the antidepressant binding site in the serotonin transporter: importance of ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem. 2009;284:10276–10284.10.1074/jbc.M806907200
  • Yan A, Wang L, Xu S, et al. Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discovery Today. 2011;16:260–269.10.1016/j.drudis.2010.12.003
  • Rao HB, Zhu F, Yang GB, et al. Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2011;39:W385–W390.10.1093/nar/gkr284
  • Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90.10.1038/nature12533
  • Xue W, Wang P, Li B, et al. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Phys Chem Chem Phys. 2016;18:3260–3271.10.1039/C5CP05771J
  • Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.10.1093/bioinformatics/bti770
  • Laskowski RA, MacArthur MW, Moss DS, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291.10.1107/S0021889892009944
  • Wang H, Goehring A, Wang KH, et al. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature. 2013;503:141–145.10.1038/nature12648
  • The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.
  • Sobolev V, Eyal E, Gerzon S, et al. SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment. Nucleic Acids Res. 2005;33:W39–W43.10.1093/nar/gki398
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410.10.1093/nar/gkm290
  • Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993;17:355–362.10.1002/(ISSN)1097-0134
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics. 1996;14:33–38, 27–28.
  • Sorensen L, Andersen J, Thomsen M, et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J Biol Chem. 2012;287:43694–43707.10.1074/jbc.M112.342212
  • Kaminski GA, Friesner RA, Tirado-Rives J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001;105:6474–6487.10.1021/jp003919d
  • Lomize MA, Pogozheva ID, Joo H, et al. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012;40:D370–D376.10.1093/nar/gkr703
  • Wu EL, Cheng X, Jo S, et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem. 2014;35:1997–2004.10.1002/jcc.v35.27
  • Hornak V, Abel R, Okur A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725.10.1002/prot.v65:3
  • Dickson CJ, Madej BD, Skjevik AA, et al. Lipid14: the amber lipid force field. J Chem Theory Comput. 2014;10:865–879.10.1021/ct4010307
  • Glide v. 5.5. Schrödinger, LLC. New York (NY); 2009.
  • Hara Y, Murayama S. Effects of analgesic-antipyretics on the spinal reflex potentials in cats: An analysis of the excitatory action of aminopyrine. Nihon yakurigaku zasshi Folia pharmacologica Japonica. 1992;100:383–390.10.1254/fpj.100.383
  • Springborg M, Kirtman B. Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields. J Chem Phys. 2007;126:104107.10.1063/1.2711202
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–897.10.1021/ar000033j
  • Xu L, Sun H, Li Y, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B. 2013;117:8408–8421.10.1021/jp404160y
  • Sun H, Li Y, Tian S, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys: PCCP. 2014;16:16719–16729.10.1039/C4CP01388C
  • Sun H, Li Y, Shen M, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys: PCCP. 2014;16:22035–22045.10.1039/C4CP03179B
  • Chen F, Liu H, Sun H, et al. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Phys Chem Chem Phys: PCCP. 2016;18:22129–22139.10.1039/C6CP03670H
  • Froesner GG, Peterson DA, Deinhardt FW, et al. Transmission of hepatitis A and hepatitis B by shared needle. Lancet. 1973;301:1183.10.1016/S0140-6736(73)91180-X
  • Wang P, Yang F, Yang H, et al. Identification of dual active agents targeting 5-HT1A and SERT by combinatorial virtual screening methods. Bio-Med Mater Eng. 2015;26(s1):S2233–S2239.10.3233/BME-151529
  • Kristensen AS, Andersen J, Jorgensen TN, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacolog Rev. 2011;63:585–640.10.1124/pr.108.000869
  • Zhu F, Han B, Kumar P, et al. Update of TTD: therapeutic target database. Nucleic Acids Res. 2010;38:D787–D791.10.1093/nar/gkp1014
  • Iversen L. Neurotransmitter transporters: fruitful targets for CNS drug discovery. Mol Psychiatry. 2000;5:357–362.10.1038/sj.mp.4000728
  • Li YH, Xu JY, Tao L, et al. SVM-prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLOS ONE. 2016;11:e0155290.10.1371/journal.pone.0155290
  • Immadisetty K, Madura JD. A review of monoamine transporter–ligand interactions. Curr Comput Aided Drug Des. 2013;9:556–568.10.2174/15734099113096660039
  • Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016;44:D1069–D1074.10.1093/nar/gkv1230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.