124
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design of diblock co-oligomers as low bandgap small molecules for organic solar cells

&
Pages 1496-1501 | Received 28 Feb 2017, Accepted 18 Apr 2017, Published online: 02 May 2017

References

  • Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res. 2012;45(5):723–733.10.1021/ar2002446
  • Abdulrazzaq OA, Saini V, Bourdo S, et al. Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol. 2013;31(5):427–442.10.1080/02726351.2013.769470
  • Dou L, Liu Y, Hong Z, et al. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev. 2015;115(23):12633–12665.10.1021/acs.chemrev.5b00165
  • Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics. 2012;6:153–161.10.1038/nphoton.2012.11
  • Mishra A, Bäuerle P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed. 2012;51(9):2020–2067.10.1002/anie.201102326
  • Zhang Q, Kan B, Liu F, et al. Small-molecule solar cells with efficiency over 9%. Nat Photonics. 2014;9:35–41.10.1038/nphoton.2014.269
  • Kan B, Li M, Zhang Q, et al. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc. 2015;137(11):3886–3893.10.1021/jacs.5b00305
  • Guo X, Xiao L, Tang W, et al. Synthesis and characterization of a new solution-processable star-shaped small molecule based on 5,6-bis(n-octyloxy)-2,1,3-benzoselenadiazole for organic solar cells. J Mater Sci. 2013;48(17):5833–5839.10.1007/s10853-013-7376-8
  • Yang M, Chen X, Zou Y, et al. A solution-processable D–A–D small molecule based on isoindigo for organic solar cells. J Mater Sci. 2013;48(3):1014–1020.10.1007/s10853-012-6831-2
  • Zhang L, Shen W, He R, et al. Density functional study on the effect of aromatic rings flanked by bithiophene of novel electron donors in small-molecule organic solar cells. Mater Chem Phys. 2016;175:13–21.10.1016/j.matchemphys.2016.01.062
  • Li Y, Guo Q, Li Z, et al. Solution processable D–A small molecules for bulk-heterojunction solar cells. Energy Environ Sci. 2010;3:1427–1436.10.1039/c003946b
  • Liu Y, Chen C-C, Hong Z, et al. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci Rep. 2013;3:3356.
  • Scharber MC, Sariciftci NS. Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci. 2013;38(12):1929–1940.10.1016/j.progpolymsci.2013.05.001
  • Anslyn EV, Dougherty DA. Modern physical organic chemistry. Sausalito (CA): University Science Books; 2006.
  • Tanaka K, Shichiri T, Yamabe T. Electronic properties of mislinked polypyrrole and polythiophene. Synth Met. 1986;14(4):271–277.10.1016/0379-6779(86)90040-8
  • Oliveira EF, Lavarda FC. Copolymers with similar comonomers: tuning frontier orbital energies for application in organic solar cells. Polym Eng Sci. 2016;56(4):479–487.10.1002/pen.v56.4
  • Oliveira EF, Lavarda FC. Molecular design of new P3HT derivatives: adjusting electronic energy levels for blends with PCBM. Mater Chem Phys. 2014;148(3):923–932.10.1016/j.matchemphys.2014.09.002
  • Oliveira EF, Camilo-Jr A, Silva-Filho LC, et al. Effect of chemical modifications on the electronic structure of poly(3-hexylthiophene). J Polym Sci, Part B: Polym Phys. 2013;51(10):842–846.10.1002/polb.23274
  • Oliveira EF, Lavarda FC. Reorganization energy for hole and electron transfer of poly(3-hexylthiophene) derivatives. Polymer. 2016;99:105–111.10.1016/j.polymer.2016.07.003
  • de Oliveira EF, Lavarda FC. Structure of P3HT in the solid state. J Polym Sci, Part B: Polym Phys 2013;51(18):1350–1354.10.1002/polb.23338
  • Batagin-Neto A, Oliveira EF, Graeff CFO, et al. Modelling polymers with side chains: MEH-PPV and P3HT. Mol Simul. 2013;39(4):309–321.10.1080/08927022.2012.724174
  • Perepichka IF, Perepichka DF. Handbook of thiophene-based materials. Chichester: Wiley; 2009.10.1002/9780470745533
  • Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers. New York (NY): Marcel Dekker; 1998.
  • Stewart JJP. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model. 2007;13(12):1173–1213.10.1007/s00894-007-0233-4
  • MOPAC2012 [internet]. Colorado Springs (CO): Stewart Computational Chemistry; 2012. Available from: HTTP://OpenMOPAC.net
  • Jensen J. Introduction to computational chemistry. Hoboken (NJ): John Wiley & Sons; 2007.
  • Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.10.1063/1.464913
  • Becke AD. A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys. 1993;98:1372–1377.10.1063/1.464304
  • Ditchfield R. Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J Chem Phys. 1971;54(2):724–728.10.1063/1.1674902
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Revision A.01. Gaussian, Inc.; 2009.
  • Jin R, Wang K. Rational design of diketopyrrolopyrrole-based small molecules as donating materials for organic solar cells. Int J Mol Sci. 2015;16(9):20326–20343.10.3390/ijms160920326
  • Bhatta RS, Tsige M. Structural dependence of electronic properties in A-A-D-A-A-type organic solar cell material. Int J Photoenergy. 2015:7p. DOI:10.1155/2015/708048
  • Scheuble M, Goll M, Ludwigs S. Branched terthiophenes in organic electronics: from small molecules to polymers. Macromol Rapid Commun. 2015;36(2):115–137.10.1002/marc.201400525
  • Tirado-Rives J, Jorgensen WL. Performance of B3LYP density functional methods for a large set of organic molecules. J Chem Theory Comput. 2008;4(2):297–306.10.1021/ct700248k
  • McCormick TM, Bridges CR, Carrera EI, et al. Conjugated polymers: evaluating DFT methods for more accurate orbital energy modeling. Macromolecules. 2013;46(10):3879–3886.10.1021/ma4005023
  • Roldao JC, Oliveira EF, Lavarda FC. Electronic structure of polythieno[3,4-b]-thiophene-co- benzodithiophene (PTB7) derivatives for organic solar cell applications. Org Electron. 2016;33:246–252.10.1016/j.orgel.2016.03.029
  • Oliveira EF, Lavarda FC. Effect of the length of alkyl side chains in the electronic structure of conjugated polymers. Mat. Res. 2014;17(6):1369–1374.10.1590/1516-1439.278814
  • Yang S, Olishevski P, Kertesz M. Bandgap calculations for conjugated polymers. Synth Met. 2004;141(1–2):171–177.10.1016/j.synthmet.2003.08.019
  • Gierschner J, Cornil J, Egelhaaf H-J. Optical bandgaps of π-conjugated organic materials at the polymer limit: experiment and theory. Adv Mater. 2007;19(2):173–191.10.1002/(ISSN)1521-4095
  • Yang Y-L, Lee Y-H, Lee Y-P, et al. Synthesis and characterization of poly(3-hexylthiophene)–poly(3-hexyloxythiophene) random copolymers with tunable band gap via Grignard metathesis polymerization. Polym Int. 2014;63(12):2068–2075.10.1002/pi.2014.63.issue-12
  • Tummala NR, Risko C, Bruner C, et al. Entanglements in P3HT and their influence on thin-film mechanical properties: Insights from molecular dynamics simulations. J Polym Sci, Part B: Polym Phys. 2015;53(13):934–942.10.1002/polb.23722
  • Alexiadis O, Mavrantzas VG. All-atom molecular dynamics simulation of temperature effects on the structural, thermodynamic, and packing properties of the pure amorphous and pure crystalline phases of regioregular P3HT. Macromolecules. 2013;46(6):2450–2467.10.1021/ma302211g
  • Marques MAL, Ullrich CA, Nogueira F, et al. Time-dependent density functional theory. Heidelberg (BW): Springer; 2006.10.1007/b11767107
  • Jmol: an open-source Java viewer for chemical structures in 3D. Available from: http://www.jmol.org/
  • Milián-Medina B, Gierschner J. π-conjugation. Wiley Interdiscip Rev Comput Mol Sci. 2012;2(4):513–524.10.1002/wcms.95
  • Szarko JM, Rolczynski BS, Guo J, et al. Electronic processes in conjugated diblock oligomers mimicking low band-gap polymers: Experimental and theoretical spectral analysis. J Phys Chem B. 2010;114(45):14505–14513.10.1021/jp101925b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.