58
Views
1
CrossRef citations to date
0
Altmetric
Articles

A theoretical study of isocyanic acid with hydrogen radical (HNCO + OH) catalysed by Aux (x = 0, 1, 3) cluster: dynamic characterisation

, &
Pages 1012-1018 | Received 07 Dec 2016, Accepted 25 Apr 2017, Published online: 18 Jun 2017

References

  • Manivannan S, Ramaraj R. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications. J Nanopart Res. 2013;15:1323–1983.10.1007/s11051-013-1978-6
  • Campbell CT. Physics: the active site in nanoparticle gold catalysis. Science. 2004;306:234–235.10.1126/science.1104246
  • Zhao S, Ramakrishnan G, Su D, et al. Novel photocatalytic applications of sub-nanometer gold particles for environmental liquid and gas phase reactions. Appl Catal B. 2011;104:239–244.10.1016/j.apcatb.2011.03.026
  • Gao Y, Shao N, Pei Y, et al. Catalytic activities of subnanometer gold clusters (Au16-Au18, Au20, and Au27-Au35) for CO oxidation. ACS Nano. 2011;10:7818–7829.
  • Mandal M, Kundu S, Ghosh SK, et al. Nanowire gold chains: formation mechanisms and conductance. J Phys Chem B. 2000;39:9063–9066.
  • Sun F, Cai W, Li Y, et al. Laser morphological manipulation of gold nanoparticles periodically arranged on solid supports. Appl Phys B. 2005;81:765–768.10.1007/s00340-005-1978-z
  • Herzing AA, Kiely CJ, Carley AF, et al. Identification of Active gold nanoclusters on iron oxide supports for CO oxidation. Science. 2008;321:1331–1335.10.1126/science.1159639
  • Darbha GK, Ray A, Ray PC. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano. 2007;3:208–214.
  • Heard CJ, Johnston RL. A density functional global optimisation study of neutral 8-atom Cu–Ag and Cu–Au clusters. Eur Phys J D. 2013;2:34–39.10.1140/epjd/e2012-30601-7
  • Patel UB, Mehta VN, Kumar MA, et al. 4-Aminothiophenol functionalized gold nanoparticles as colorimetric sensors for the detection of cobalt using UV-Visible spectrometry. Res Chem Intermed. 2013;39:771–779.10.1007/s11164-012-0773-9
  • Benetti F, Fedel M, Minati L, et al. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption. J Nanopart Res. 2013;6:1–9.
  • Zyrianov M, Droz-Georget Th, Sanov A. Competitive photodissociation channels in jet-cooled HNCO: thermochemistry and near-threshold predissociation. J Chem Phys. 1996;105(18):8111–8116.10.1063/1.472665
  • Stevens JE, Cui Q, Morokuma K. An ab initio study of the dissociation of HNCO in the S1 electronic state. J Chem Phys. 1998;108:1452–1458.10.1063/1.475517
  • Fang WH, You XZ, Yin Z. Theoretical studies on photolysis and pyrolysis of isocyanic acid. Chem Phys Lett. 1995;238:236–242.10.1016/0009-2614(95)98592-2
  • SS Brown, CM Cheatum, DA Fitzwater, et al. A simple model of the HNCO (1A′) excited state potential energy surface and a classical trajectory analysis of the vibrationally directed bond-selected photodissociation. J Chem Phys. 1996;105:10911–10918.10.1063/1.472861
  • Klossika JJ, Flöthmann HF, Beck C. A simple model of the HNCO (1A′) excited state potential energy surface and a classical trajectory analysis of the vibrationally directed bond-selected photodissociation. Chem Phys Lett. 1997;276:325–333.10.1016/S0009-2614(97)00796-3
  • Kaledin AL, Cui Q, Heaven MC, et al. Ab initio theoretical studies on photodissociation of HNCO upon S1(1A″) ← S0(1A′)S1(1A″) ← S0(1A′) excitation: the role of internal conversion and intersystem crossing. J Chem Phys. 1999;111:5004–5016.10.1063/1.479758
  • Zyrianov M, Droz-Georget TH, Reisler H. Fragment recoil anisotropies in the photoinitiated decomposition of HNCO. J Chem Phys. 1999;110:2059–2068.10.1063/1.477874
  • Zyrianov M, Droz-Georget TH, Sanov A, et al. Competitive photodissociation channels in jet-cooled HNCO: thermochemistry and near-threshold predissociation. J Chem Phys. 1996;105:8111–8116.10.1063/1.472665
  • Reinhard S, Martina B. On the S1 → S0 internal conversion in the photodissociation of HNCO: the role of the NC stretch as a promoting mode. Chem Phys Lett. 2000;332:611–616.
  • Mertens JD, Kohse-Höinghaus K, Hanson RK. A shock tube study of H + HNCO → NH2 + CO. Int J Chem Kinet. 1991;23:655–668.10.1002/kin.v23:8
  • Raunier S, Chiavassa T, Marinelli F, et al. Reactivity of HNCO with NH3 at low temperature monitored by FTIR spectroscopy: formation of NH4+OCN−. Chem Phys Lett. 2003;368:594–600.10.1016/S0009-2614(02)01919-X
  • Xu ZF, Sun Jia-Zhong. Theoretical study on the reaction path and variational rate constant of the reaction HNCO + NH → NCO + NH2. J Phys Chem A. 1998;102:1194–1199.10.1021/jp972959n
  • Xu ZF, Sun CC. Ab initio study on reaction path and rate constant of the hydrogen atom abstraction reaction HNCO + N → NCO + NH. J Mol Struct (Thoechem). 1999;459:37–46.10.1016/S0166-1280(98)00255-3
  • Raunier S, Chiavassa T, Allouche AA, et al. Thermal reactivity of HNCO with water ice: an infrared and theoretical study. Chem Phys. 2003;288:197–210.10.1016/S0301-0104(03)00024-7
  • Geith J, Klapötke TM. Ab initio calculations of the polymerization pathways of isocyanic acid HNCO. J Mol Struct (Thoechem). 2001;538:29–39.10.1016/S0166-1280(00)00637-0
  • Mertens JD, Kohse-Höinghaus K, Hanson RK, et al. A shock tube study of H + HNCO → NH 2 + CO. Int J Chem Kinet. 1991;23:655–668.10.1002/kin.v23:8
  • Xu ZF, Sun J-Z. Theoretical study on the reaction path and variational rate constant of the reaction HNCO + NH → NCO + NH2. J Phys Chem A. 1998;102:1194–1199.10.1021/jp972959n
  • Xu ZF, Sun CC. Ab initio study on reaction path and rate constant of the hydrogen atom abstraction reaction HNCO + N → NCO + NH. J Mol Struct (Thoechem). 1999;459:37–46.10.1016/S0166-1280(98)00255-3
  • Shi TJ, Li ZH, Liu RZ. Mechanism of reaction HNCO + OH → H2O + NCO. Acta Physicochemca Sinica. 1999;15(3):247–252.
  • Raunier S, Chiavassa T, Allouche AA, et al. Thermal reactivity of HNCO with water ice: an infrared and theoretical study. Chem Phys. 2003;288:197–210.10.1016/S0301-0104(03)00024-7
  • Ji YQ, Feng WL. MP2 and QCISD study of hydrogen transfer reaction path of the reaction HNCO with carbon-hydrogen radicals CHx (x=1-3). Acta Chim Sinica. 2002;60(7):1167–1172.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision B.04. Pittsburgh (PA): Gaussian; 2003.
  • Truhlar DG. The reaction path in chemistry: current approaches and perspectives. Dordrecht: Springer; 1995. p. 229.
  • Truhlar DG, Garrett BC, Klippenstein SJ. Current status of transition-state theory. J Phys Chem. 1996;100:12771–12800.10.1021/jp953748q
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985;82:270–283.10.1063/1.448799
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys. 1985;82:299–310.10.1063/1.448975
  • Lu DH, Truong TN, Melissas VS, et al. Polyrate 4: a new version of a computer program for the calculation of chemical reaction rates for polyatomics. Comput Phys Commun. 1992;71:235–262.10.1016/0010-4655(92)90012-N
  • Liu YP, Lynch GC, Truong TN, et al. Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene. J Am Chem Soc. 1993;115:2408–2415.10.1021/ja00059a041
  • Liu HX, Wang YC, Yang L, et al. CH3NHNH2 + OH reaction: mechanism and dynamics studies. J Comput Chem. 2009;30:2194–2204.10.1002/jcc.v30:14
  • Luo J, Jia X, Gao Y, et al. Theoretical study on the kinetics of OH radical reactions with CH3OOH and CH3CH2OOH. J Comput Chem. 2011;32:987–997.10.1002/jcc.21684
  • Zhang H, Zhang GL, Liu JY, et al. Theoretical studies on the reactions CH3SCH3 with OH, CF3, and CH3 radicals. J Comput Chem. 2010;31:2794–2803.10.1002/jcc.v31:15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.