315
Views
18
CrossRef citations to date
0
Altmetric
Articles

Plastic deformation behaviours of CuZr amorphous/crystalline nanolaminate: a molecular dynamics study

ORCID Icon, , &
Pages 1116-1124 | Received 23 Jan 2017, Accepted 03 May 2017, Published online: 09 Jun 2017

References

  • Inoue A, Kato A, Zhang T, et al. Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold castin method. Mater Trans, JIM. 1991;32:609–616.10.2320/matertrans1989.32.609
  • Christopher AS, Todd CH, Upadrasta R. Mechanical behavior of amorphous alloys. Acta Mater. 2007;55:4067–4109.
  • Xi XK, Zhao DQ, Pan MX, et al. Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett. 2005;94:125510.10.1103/PhysRevLett.94.125510
  • Johnson WL. Bulk glass-forming metallic alloys: science and technology. MRS Bull. 1999;24:42–56.10.1557/S0883769400053252
  • Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Mater Sci Eng: R: Rep. 2013;74:71–132.10.1016/j.mser.2013.04.001
  • Neudecker M, Mayr SG. Dynamics of shear localization and stress relaxation in amorphous Cu50Ti50. Acta Mater. 2009;57:1437–1441.10.1016/j.actamat.2008.11.032
  • Vaidyanathan R, Dao M, Ravichandran G, et al. Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 2001;49:3781–3789.10.1016/S1359-6454(01)00263-4
  • He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure dendrite composite with enhanced plasticity. Nat Mater. 2003;2:33–37.10.1038/nmat792
  • Fan C, Inoue A. Improvement of mechanical properties by precipitation of nanoscale compound particles in Zr–Cu–Pd–Al amorphous alloys. Mater Trans, JIM. 1997;38:1040–1046.10.2320/matertrans1989.38.1040
  • Hays CC, Kim CP, Johnson WL. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys Rev Lett. 2000;84:2901–2904.10.1103/PhysRevLett.84.2901
  • Hays CC, Kim CP, Johnson WL. Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater Sci Eng: A. 2001;304–306:650–655.10.1016/S0921-5093(00)01557-4
  • Pauly S, Liu G, Wang G, et al. Microstructure heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 2009;57:5445–5453.10.1016/j.actamat.2009.07.042
  • Koval Y, Firstov G, Kotko A. Martensitic transformation and shape memory effect in ZrCu intermetallic compound. Scr Metall Mater. 1992;27:1611–1616.10.1016/0956-716X(92)90153-6
  • Calin M, Eckert J, Schultz L. Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 2003;48:653–658.10.1016/S1359-6462(02)00560-2
  • Schober HR, Laird BB. Localized low-frequency vibrational modes in glasses. Phy Rev B. 1991;44:13.
  • Jin ZH, Gumbsch P, Albe K, et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 2008;56:1126–1135.10.1016/j.actamat.2007.11.020
  • Cheng YQ, Ma E, Sheng HW. Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett. 2009;102:245501.10.1103/PhysRevLett.102.245501
  • Cheng Q, Wu HA, Wang Y, et al. Pseudoelasticity of Cu–Zr nanowires via stress-induced martensitic phase transformations. Appl Phys Lett. 2009;95:021911.10.1063/1.3183584
  • Sutrakar VK, Mahapatra DR. Stress-inducd martensitic phase transformation in Cu–Zr nanowires. Mater Lett. 2009;63:1289–1292.10.1016/j.matlet.2009.02.064
  • Sutrakar VK, Mahapatra DR. Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading. Intermetallics. 2010;18:679–687.10.1016/j.intermet.2009.11.006
  • Şopu D, Stoica M, Eckert J. Deformation behavior of metallic glass composites reinforced with shapememory nanowires studied via molecular dynamics simulations. Appl Phys Lett. 2015;106:211902.10.1063/1.4921857
  • Wang Y, Li J, Hamza AV, et al. Ductile crystalline-amorphous nanolaminates. Proc Nat Acad Sci. 2007;104:11155–11160.10.1073/pnas.0702344104
  • Şopu D, Ritter Y, Gleiter H, et al. Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations. Phys Rev B. 2011;83:100202.10.1103/PhysRevB.83.100202
  • Kim JY, Jang D, Greer JR. Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv Func Mater. 2011;21:4550–4554.10.1002/adfm.v21.23
  • Kim JY, Gu X, Wraith M, et al. Suppression of catastrophic failure in metallic glass-polyisoprene nanolaminate containing nanopillars. Adv Func Mater. 2012;22:1972–1980.10.1002/adfm.201103050
  • Sha ZD, He LC, Pei QX, et al. The mechanical properties of a nanoglass/metallic glass/nanoglass sandwich structure. Scripta Mater. 2014;83:37–40.10.1016/j.scriptamat.2014.04.009
  • Adibi S, Branicio PS, Zhang YW, et al. Composition and grain size effects on the structure and mechanical properties of CuZr nanoglass. J Appl Phys. 2014;116:043522.10.1063/1.4891450
  • Guo W, Jägle E, Yao J, et al. Intrinsic and extrinsic size effect in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 2014;80:94–106.10.1016/j.actamat.2014.07.027
  • Bar-Cohen Y. Biomimetics: biologically inspired technologies. Boca Raton, FL: Taylor & Francis Group; 2006.
  • Luan YW, Li CH, Zhang D, et al. Plastic deformation mechanisms and size effect of Cu50Zr50/Cu amorphous/crystalline nanolaminate: a molecular dynamics study. Comput Mater Sci. 2017;129:137–146.10.1016/j.commatsci.2016.12.003
  • More information about this program can be available from: http://lammps.sandia.gov
  • Stukowski A. Visualizaiton and analysis of atomistic simulation data with ovito-the open visualization tool. Modell Simul Mater Sci Eng. 2010;18:015012.10.1088/0965-0393/18/1/015012
  • Cheng YQ, Cao AJ, Sheng HW, et al. Local order influences initiation of plastic flow in metallic glass: effects of alloy composition and sample cooling history. Acta Mater. 2008;56:5263–5275.10.1016/j.actamat.2008.07.011
  • Wu Y, Ma D, Li QK, et al. Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction. Acta Mater. 2017;124:478–488.10.1016/j.actamat.2016.11.029
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.10.1063/1.447334
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.10.1103/PhysRevA.31.1695
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego, CA: Academic Press; 2001.
  • Shimizu F, Ogata S, Li J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans. 2007;48:2923–2927.10.2320/matertrans.MJ200769
  • Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E. 1998;57:7192–7205.10.1103/PhysRevE.57.7192
  • Li J. AtomEye: an efficient atomistic configuration viewer. Modell Simul Mater Sci Eng. 2003;11:173–177.10.1088/0965-0393/11/2/305
  • Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58:11085–11088.10.1103/PhysRevB.58.11085
  • Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91:4950–4963.10.1021/j100303a014
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modell Simul Mater Sci Eng. 2012;20:045021.10.1088/0965-0393/20/4/045021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.