417
Views
9
CrossRef citations to date
0
Altmetric
Articles

Prediction of chemical biodegradability using computational methods

, , , &
Pages 1277-1290 | Received 12 Feb 2017, Accepted 02 May 2017, Published online: 12 Jun 2017

References

  • Ruecker C, Kuemmerer K. Modeling and predicting aquatic aerobic biodegradation – a review from a user’s perspective. Green Chem. 2012;14:875–887.10.1039/c2gc16267a
  • Shah AA, Hasan F, Hameed A, et al. Biological degradation of plastics: a comprehensive review. Biotechnol Adv. 2008;26:246–265.10.1016/j.biotechadv.2007.12.005
  • Peijnenburg W. Structure–activity relationships for biodegradation: a critical review. Pure Appl Chem. 1994;66:1931–1941.
  • Pavan M, Worth AP. Review of estimation models for biodegradation. QSAR Comb Sci. 2008;27:32–40.10.1002/(ISSN)1611-0218
  • Rorije E, Loonen H, Müller M, et al. Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere. 1999;38:1409–1417.10.1016/S0045-6535(98)00543-8
  • Boethling, RS. Designing biodegradable chemicals. In: DeVito SC, Garrett RL, editors. Designing safer chemicals: green chemistry for pollution prevention. Vol. 640, American Chemical Society; 1996. p. 156–171.10.1021/symposium
  • Raymond JW, Rogers TN, Shonnard DR, et al. A review of structure-based biodegradation estimation methods. J Hazard Mater. 2001;84:189–215.10.1016/S0304-3894(01)00207-2
  • Howard PH, Muir DCG. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environ Sci Technol. 2010;44:2277–2285.10.1021/es903383a
  • Howard PH, Muir DCG. Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals. Environ Sci Technol. 2011;45:6938–6946.10.1021/es201196x
  • Cheng F, Ikenega Y, Zhou Y, et al. In silico assessment of chemical biodegradability. J Chem Inf Model. 2012;52:655–669.10.1021/ci200622d
  • Boethling RS, Sommer E, DiFiore D. Designing small molecules for biodegradability. Chem Rev. 2007;107:2207–2227.10.1021/cr050952t
  • Howard PH, Stiteler WM, Meylan WM, et al. Predictive model for aerobic biodegradability developed from a file of evaluated biodegradation data. Environ Toxicol Chem. 1992;11:593–603.10.1002/etc.v11:5
  • Hiromatsu K, Yakabe Y, Katagiri K, et al. Prediction for biodegradability of chemicals by an empirical flowchart. Chemosphere. 2000;41:1749–1754.10.1016/S0045-6535(00)00056-4
  • Hou BK, Wackett LP, Ellis LBM. Microbial pathway prediction: a functional group approach. J Chem Inf Comput Sci. 2003;43:1051–1057.10.1021/ci034018f
  • DeLisle RK, Dixon SL. Induction of decision trees via evolutionary programming. J Chem Inf Comput Sci. 2004;44:862–870.10.1021/ci034188s
  • Philipp B, Hoff M, Germa F, et al. Biochemical interpretation of quantitative structure–activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability. Environ Sci Technol. 2007;41:1390–1398.10.1021/es061505d
  • Andreini C, Bertini I, Cavallaro G, et al. A simple protocol for the comparative analysis of the structure and occurrence of biochemical pathways across superkingdoms. J Chem Inf Model. 2011;51:730–738.10.1021/ci100392q
  • Boethling RS, Sabljic A. Screening-level model for aerobic biodegradability based on a survey of expert knowledge. Environ Sci Technol. 1989;23:672–679.10.1021/es00064a005
  • Boethling RS, Howard PH, Meylan WM, et al. Group contribution method for predicting probability and rate of aerobic biodegradation. Environ Sci Technol. 1994;28:459–465.10.1021/es00052a018
  • Loonen H, Lindgren F, Hansen B, et al. Prediction of biodegradability from chemical structure: modeling of ready biodegradation test data. Environ Toxicol Chem. 1999;18:1763–1768.10.1002/etc.v18:8
  • Tunkel J, Howard PH, Boethling RS, et al. Predicting ready biodegradability in the Japanese ministry of international trade and industry test. Environ Toxicol Chem. 2000;19:2478–2485.10.1002/etc.v19:10
  • Mansouri K, Ringsted T, Ballabio D, et al. Quantitative structure-activity relationship models for ready biodegradability of chemicals. J Chem Inf Model. 2013;53:867–878.10.1021/ci4000213
  • Lombardo A, Pizzo F, Benfenati E, et al. A new in silico classification model for ready biodegradability, based on molecular fragments. Chemosphere. 2014;108:10–16.10.1016/j.chemosphere.2014.02.073
  • Cao Q, Leung KM. Prediction of chemical biodegradability using support vector classifier optimized with differential evolution. J Chem Inf Model. 2014;54:2515–2523.10.1021/ci500323t
  • Fernández A, Rallo R, Giralt F. Prioritization of in silico models and molecular descriptors for the assessment of ready biodegradability. Environ Res. 2015;142:161–168.10.1016/j.envres.2015.06.031
  • Boethling R. Comparison of ready biodegradation estimation methods for fragrance materials. Sci Total Environ. 2014;497–498:60–67.10.1016/j.scitotenv.2014.07.090
  • Pizzo F, Lombardo A, Manganaro A, et al. In silico models for predicting ready biodegradability under REACH: a comparative study. Sci Total Environ. 2013;463–464:161–168.10.1016/j.scitotenv.2013.05.060
  • Jaworska JS, Boethling RS, Howard PH. Recent developments in broadly applicable structure–biodegradability relationships. Environ Toxicol Chem. 2003;22:1710–1723.10.1897/01-302
  • Bemis GW, Murcko MA. The properties of known drugs. 1. Molecular frameworks. J Med Chem. 1996;39:2887–2893.10.1021/jm9602928
  • Schuffenhauer A, Ertl P, Roggo S, et al. The scaffold tree − visualization of the scaffold universe by hierarchical scaffold classification. J Chem Inf Model. 2007;47:47–58.10.1021/ci600338x
  • Hou T, Wang J. Structure–ADME relationship: still a long way to go? Expert Opin Drug Metab Toxicol. 2008;4:759–770.10.1517/17425255.4.6.759
  • Hou T, Wang J, Zhang W, et al. Recent advances in computational prediction of drug absorption and permeability in drug discovery. Curr Med Chem. 2006;13:2653–2667.10.2174/092986706778201558
  • Hou T, Li Y, Zhang W, et al. Recent developments of in silico predictions of intestinal absorption and oral bioavailability. Comb Chem High Throughput Screening. 2009;12:497–506.10.2174/138620709788489082
  • Wang J, Hou T. Advances in computationally modeling human oral bioavailability. Adv Drug Deliv Rev. 2015;86:11–16.10.1016/j.addr.2015.01.001
  • Zhu J, Wang J, Yu H, et al. Recent developments of in silico predictions of oral bioavailability. Comb Chem High Throughput Screening. 2011;14:362–374.10.2174/138620711795508368
  • Hou T, Wang J, Li Y. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model. 2007;47:2408–2415.10.1021/ci7002076
  • Hou T, Wang J, Zhang W, et al. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J Chem Inf Model. 2007;47:460–463.10.1021/ci6003515
  • Hou T, Wang J, Zhang W, et al. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model. 2007;47:208–218.10.1021/ci600343x
  • Hou TJ, Zhang W, Xia K, et al. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. J Chem Inf Comput Sci. 2004;44:1585–1600.10.1021/ci049884m
  • Lei T, Li Y, Song Y, et al. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. J Cheminform. 2016;8:6.
  • Wang J, Hou T. Recent advances on aqueous solubility prediction. Comb Chem High Throughput Screening. 2011;14:328–338.10.2174/138620711795508331
  • Wang J, Krudy G, Hou T, et al. Development of reliable aqueous solubility models and their application in druglike analysis. J Chem Inf Model. 2007;47:1395–1404.10.1021/ci700096r
  • Wang S, Li Y, Xu L, et al. Recent developments in computational prediction of hERG blockage. Curr Top Med Chem. 2013;13:1317–1326.10.2174/15680266113139990036
  • Csizmadia F, Tsantili-Kakoulidou A, Panderi I, et al. Prediction of distribution coefficient from structure. 1. Estimation method. J Pharm Sci. 1997;86:865–871.10.1021/js960177k
  • Tetko IV, Tanchuk VY, Kasheva TN, et al. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inf Comput Sci. 2001;41:1488–1493.10.1021/ci000392t
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.10.1016/S0169-409X(96)00423-1
  • MOE, Chemical Computing Group. [Internet]. Montreal; 2009. Available from: http://www.chemcomp.com.
  • Shi H, Tian S, Li Y, et al. Absorption, distribution, metabolism, excretion, and toxicity evaluation in drug discovery. 14. Prediction of human pregnane X receptor activators by using naive Bayesian classification technique. Chem Res Toxicol. 2015;28:116–125.10.1021/tx500389q
  • Bender A, Mussa HY, Glen RC, et al. Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J Chem Inf Comput Sci. 2004;44:170–178.10.1021/ci034207y
  • Chen L, Li YY, Zhao Q, et al. ADME evaluation in drug discovery. 10. Predictions of p-glycoprotein inhibitors using recursive partitioning and naive bayesian classification techniques. Mol Pharm. 2011;8:889–900.10.1021/mp100465q
  • Li D, Xu L, Li Y, et al. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for p-glycoprotein substrates. Mol Pharm. 2014;11:716–726.10.1021/mp400450m
  • Tian S, Li Y, Wang J, et al. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines. J Cheminform. 2013;5 (1):5.
  • Tian S, Wang J, Li Y, et al. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev. 2015;86:2–10.10.1016/j.addr.2015.01.009
  • Tian S, Wang J, Li Y, et al. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol Pharm. 2012;9:2875–2886.10.1021/mp300198d
  • Wang S, Li Y, Wang J, et al. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Mol Pharm. 2012;9:996–1010.10.1021/mp300023x
  • Wipke WT, Dyott TM. Use of ring assemblies in a ring perception algorithm. J Chem Inf Comput Sci. 1975;15:140–147.
  • Wang J, Hou T. Drug and drug candidate building block analysis. J Chem Inf Model. 2010;50:55–67.10.1021/ci900398f
  • Bemis GW, Murcko MA. Properties of known drugs. 2. Side chains. J Med Chem. 1999;42:5095–5099.10.1021/jm9903996
  • Langdon SR, Brown N, Blagg J. Scaffold diversity of exemplified medicinal chemistry space. J Chem Inf Model. 2011;51:2174–2185.10.1021/ci2001428
  • Shneiderman B. Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans Graphics. 1992;11:92–99.10.1145/102377.115768
  • Tian S, Sun H, Pan P, et al. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J Chem Inf Model. 2014;54:2664–2679.10.1021/ci500414b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.