199
Views
8
CrossRef citations to date
0
Altmetric
Articles

Critical test of bead–spring model to resolve the scaling laws of polymer melts: a molecular dynamics study

, , &
Pages 1196-1201 | Received 01 Feb 2017, Accepted 17 May 2017, Published online: 12 Jun 2017

References

  • Doi M, Edwards SF. The theory of polymer dynamics. Vol. 73. Oxford: Oxford University Press.
  • Ferry JD. Viscoelastic properties of polymers. New York (NY): Wiley; 1980.
  • Masubuchi Y. Simulating the flow of entangled polymers. Annu Rev Chem Biomol Eng. 2014;5:11–33.
  • Baaden M, Marrink SJ. Coarse-grain modelling of protein-protein interactions. Curr Opinion Struct Biol. 2013;23:878–886.
  • Brini E, Algaer EA, Ganguly P, et al. Systematic coarse-graining methods for soft matter simulations-a review. Soft Matter. 2013;9:2108–2119.
  • Everaers R, Sukumaran SK, Grest GS, et al. Rheology and microscopic topology of entangled polymeric liquids. Science. 2004;303:823–826.
  • Gay J, Berne B. Modification of the overlap potential to mimic a linear site-site potential. J Chem Phys. 1981;74:3316–3319.
  • Groot RD, Warren PB. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107:4423–4435.
  • Jury S, Bladon P, Cates M, et al. Simulation of amphiphilic mesophases using dissipative particle dynamics. Phys Chem Chem Phys. 1999;1:2051–2056.
  • Karimi-Varzaneh HA, van der Vegt NF, Müller-Plathe F, et al. How good are coarse-grained polymer models? A comparison for atactic polystyrene. Chem Phys Chem. 2012;13:3428–3439.
  • Kremer K, Grest GS. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J Chem Phys. 1990;92:5057–5086.
  • Riniker S, Allison JR, van Gunsteren WF. On developing coarse-grained models for biomolecular simulation: a review. Phys Chem Chem Phys. 2012;14:12423–12430.
  • Baig C, Mavrantzas VG, Kr\"{o}ger M. Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear. Macromolecules. 2010;43:6886–6902.
  • Barrat JL, Baschnagel J, Lyulin A. Molecular dynamics simulations of glassy polymers. Soft Matter. 2010;6:3430–3446.
  • Chung HS, Piana-Agostinetti S, Shaw DE, et al. Structural origin of slow diffusion in protein folding. Science. 2015;349:1504–1510.
  • Do C, Lunkenheimer P, Diddens D, et al. Li+ transport in poly (ethylene oxide) based electrolytes: neutron scattering, dielectric spectroscopy, and molecular dynamics simulations. Phys. Rev Lett. 2013;111:018301.
  • Hossain D, Tschopp M, Ward D, et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer. 2010;51:6071–6083.
  • Hur K, Jeong C, Winkler RG, et al. Chain dynamics of ring and linear polyethylene melts from molecular dynamics simulations. Macromolecules. 2011;44:2311–2315.
  • Mitchell JS, Harris SA. Thermodynamics of writhe in dna minicircles from molecular dynamics simulations. Phys Rev Lett. 2013;110:148105-1–148105-5.
  • Ndoro TV, Voyiatzis E, Ghanbari A, et al. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: Atomistic molecular dynamics simulations. Macromolecules. 2011;44:2316–2327.
  • Stephanou PS, Baig C, Tsolou G, et al. Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model. J Chem Phys. 2010;132:124904-1–124904-16.
  • Takahashi KZ, Nishimura R, Yasuoka K, et al. Molecular dynamics simulations for resolving scaling laws of polyethylene melts. Polymers. 2017;9:24-1–24-12.
  • Feng Y, Ning N, Zhao Q, et al. Role of block copolymer morphology on particle percolation of polymer nanocomposites. Soft Matter. 2014;10:8236–8244.
  • Wang Z, Liu J, Wu S, et al. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers. Phys Chem Chem Phys. 2010;12:3014–3030.
  • Ge T, Pierce F, Perahia D, et al. Molecular dynamics simulations of polymer welding: Strength from interfacial entanglements. Phys Rev Lett. 2013;110:098301.
  • Binder K, Kreer T, Milchev A. Polymer brushes under flow and in other out-of-equilibrium conditions. Soft Matter. 2011;7:7159–7172.
  • Binder K, Milchev A. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. J Polym Sci Part B: Polym Phys. 2012;50:1515–1555.
  • Galuschko A, Spirin L, Kreer T, et al. Frictional forces between strongly compressed, nonentangled polymer brushes: molecular dynamics simulations and scaling theory. Langmuir. 2010;26:6418–6429.
  • Longo GS. Olvera de La Cruz M, Szleifer I. Molecular theory of weak polyelectrolyte gels: the role of ph and salt concentration. Macromolecules. 2010;44:147–158.
  • Vagias A, Raccis R, Koynov K, et al. Complex tracer diffusion dynamics in polymer solutions. Phys Rev Lett. 2013;111:088301.
  • Goossen S, Brás A, Krutyeva M, et al. Molecular scale dynamics of large ring polymers. Physical Rev Lett. 2014;113:168302-1–168302-5.
  • Mukherji D, Marques CM, Kremer K. Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat Commun. 2014;5:4882-1–4882-6.
  • Ge T, Robbins MO, Perahia D, et al. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength. Phys Rev E. 2014;90:012602.
  • Stukalin EB, Cai LH, Kumar NA, et al. Self-healing of unentangled polymer networks with reversible bonds. Macromolecules. 2013;46:7525–7541.
  • Brackley CA, Taylor S, Papantonis A, et al. Nonspecific bridging-induced attraction drives clustering of dna-binding proteins and genome organization. Proc Nat Acad Sci. 2013;110:E3605–E3611.
  • Swope WC, Andersen HC, Berens PH, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J Chem Phys. 1982;76:637–649.
  • Andersen H. Rattle: A "velocity" version of the shake algorithm for molecular dynamics calculations. J Comput Phys. 1983;52:24–34.
  • Flory PJ. The configuration of real polymer chains. J Chem Phys. 1949;17:303–310.
  • Rouse PE Jr. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys. 1953;21:1272–1280.
  • Hoy RS, Foteinopoulou K, Kröger M. Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length. Phys Rev E. 2009;80:031803.
  • Kröger M. Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems. Comput Phys Commun. 2005;168:209–232.
  • Shanbhag S, Kröger M. Primitive path networks generated by annealing and geometrical methods: insights into differences. Macromolecules. 2007;40:2897–2903.
  • Harmandaris V, Adhikari N, van der Vegt NF, et al. Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations. Macromolecules. 2006;39:6708–6719.
  • Harmandaris VA, Reith D, Van der Vegt NF, et al. Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene. Macromol Chem Phys. 2007;208:2109–2120.
  • Harmandaris VA, Kremer K. Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules. 2009;42: 791–802.
  • Likhtman AE, Sukumaran SK, Ramirez J. Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules. 2007;40:6748–6757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.