327
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of water molecules on nanoscale wetting behaviour of molecular ethanol on hydroxylated SiO2 substrate

, , , , &
Pages 1377-1384 | Received 17 Feb 2017, Accepted 05 Jul 2017, Published online: 18 Jul 2017

References

  • Pramauro E, Pelezetti E. Surfactants in analytical chemistry: applications of organized amphiphilic media. Amsterdam: Elsevier; 1996.
  • Alexandridis P, Lindman B. Amphiphilic block copolymers: self-assembly and applications. Amsterdam: Elsevier; 2000.
  • Bai C, Liu L, Sun H. Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a reaxff force field. J Phys Chem C. 2012;116:7029–7039.10.1021/jp300221j
  • Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev. 2001;47:209–228.10.1016/S0169-409X(01)00107-7
  • Nowak AP, Breedveld V, Pakstis L, et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature. 2002;417:424–428.10.1038/417424a
  • Wang H, Ren X, Meng F. Molecular dynamics simulation of six β-blocker drugs passing across POPC bilayer. Mol Simul. 2016;42:56–63.10.1080/08927022.2015.1008470
  • Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B. 2010;79:5–18.10.1016/j.colsurfb.2010.03.029
  • Chan AS, Groves M, Malardier-Jugroot C. Self-assembly of alternating copolymers and the role of hydrophobic interactions: characterisation by molecular modelling. Mol Simul. 2011;37:701–709.10.1080/08927020903483296
  • Cheng T, Sun H. Adsorption of ethanol vapor on mica surface under different relative humidities: a molecular simulation study. J Phys Chem C. 2012;116:16436–16446.10.1021/jp3020595
  • Wutzler P, Sauerbrei A. Virucidal efficacy of a combination of 0.2% peracetic acid and 80%(v/v) ethanol (PAA-ethanol) as a potential hand disinfectant. J Hosp Infect. 2000;46:304–308.10.1053/jhin.2000.0850
  • Barraza-Botet CL, Wagnon SW, Wooldridge MS. Combustion chemistry of ethanol: ignition and speciation studies in a rapid compression facility. J Phys Chem A. 2016;120:7408–7418.10.1021/acs.jpca.6b06725
  • Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009;86:2273–2282.10.1016/j.apenergy.2009.03.015
  • Abildskov J, O’Connell J. Prediction of solubilities of complex medium-sized chemicals. II. solutes in mixed solvents. Mol Simul. 2004;30:367–378.10.1080/08927020310001659926
  • Prasad S, Singh A, Joshi H. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl. 2007;50:1–39.10.1016/j.resconrec.2006.05.007
  • Girginova PI, Daniel-da-Silva AL, Lopes CB, et al. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci. 2010;345:234–240.10.1016/j.jcis.2010.01.087
  • Yang H, Xu R, Xue X, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. J Hazard Mater. 2008;152:690–698.10.1016/j.jhazmat.2007.07.060
  • Sun Y, Duan L, Guo Z, et al. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application. J Magn Magn Mater. 2005;285:65–70.10.1016/j.jmmm.2004.07.016
  • Dong J, Xu Z, Wang F. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl Surf Sci. 2008;254:3522–3530.10.1016/j.apsusc.2007.11.048
  • Roldan P, Alcântara I, Castro G, et al. Determination of Cu, Ni, and Zn in fuel ethanol by FAAS after enrichment in column packed with 2-aminothiazole-modified silica gel. Anal Bioanal Chem. 2003;375:574–577.10.1007/s00216-002-1735-7
  • Effenberger F, Götz G, Bidlingmaier B, et al. Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces. Angew Chem Int Ed. 1998;37:2462–2464.10.1002/(ISSN)1521-3773
  • Faucheux N, Schweiss R, Lützow K, et al. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials. 2004;25:2721–2730.10.1016/j.biomaterials.2003.09.069
  • Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96:1533–1554.10.1021/cr9502357
  • Ulman A. An introduction to ultrathin organic films: from Langmuir–Blodgett to self-assembly. San Diego (CA): Academic press; 2013.
  • Lee H, Kepley LJ, Hong HG, et al. Inorganic analogs of Langmuir–Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J Am Chem Soc. 1988;110:618–620.10.1021/ja00210a062
  • Asmussen A, Riegler H. X-ray reflectivity study of behenic acid Langmuir–Blodgett mono-and multilayers on SiO2 surfaces as-deposited and after thermal treatment: influence of substrate/film interactions on molecular ordering and film topology. J Chem Phys. 1996;104:8151–8158.10.1063/1.471491
  • Xie S, Li W, Pan Z, et al. Mechanical and physical properties on carbon nanotube. J Phys Chem Solids. 2000;61:1153–1158.10.1016/S0022-3697(99)00376-5
  • Gun'ko V, Zarko V, Turov V, et al. CVD-titania on fumed silica substrate. J Colloid Interface Sci. 1998;198:141–156.10.1006/jcis.1997.5270
  • Nguyen TH, Elimelech M. Adsorption of plasmid DNA to a natural organic matter-coated silica surface: kinetics, conformation, and reversibility. Langmuir. 2007;23:3273–3279.10.1021/la0622525
  • Fang X, Liu X, Schuster S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc. 1999;121:2921–2922.10.1021/ja9837809
  • Matsuura S-i, Baba T, Chiba M, et al. Nanoporous scaffold for DNA polymerase: pore-size optimisation of mesoporous silica for DNA amplification. RSC Adv. 2014;4:25920–25923.
  • Karnes JJ, Gobrogge EA, Walker RA, et al. Unusual structure and dynamics at silica/methanol and silica/ethanol interfaces – a molecular dynamics and nonlinear optical study. J Phys Chem B. 2015;120:1569–1578.
  • Gobrogge EA, Walker RA. Binary solvent organization at silica/liquid interfaces: preferential ordering in acetonitrile-methanol mixtures. J Phys Chem Lett. 2014;5:2688–2693.10.1021/jz500906d
  • Brindza MR, Walker RA. Differentiating solvation mechanisms at polar solid/liquid interfaces. J Am Chem Soc. 2009;131:6207–6214.10.1021/ja810117f
  • Siler AR, Walker RA. Effects of solvent structure on interfacial polarity at strongly associating silica/alcohol interfaces. J Phys Chem C. 2011;115:9637–9643.10.1021/jp201153z
  • Andoh Y, Kurahashi K, Sakuma H, et al. Anisotropic molecular clustering in liquid ethanol induced by a charged fully hydroxylated silicon dioxide (SiO2) surface. Chem Phys Lett. 2007;448:253–257.10.1016/j.cplett.2007.10.008
  • Argyris D, Tummala NR, Striolo A, et al. Molecular structure and dynamics in thin water films at the silica and graphite surfaces. J Phys Chem C. 2008;112:13587–13599.10.1021/jp803234a
  • Ho TA, Argyris D, Papavassiliou DV, et al. Interfacial water on crystalline silica: a comparative molecular dynamics simulation study. Mol Simul. 2011;37:172–195.10.1080/08927022.2010.513008
  • Phan A, Cole DR, Striolo A. Liquid ethanol simulated on crystalline alpha alumina. J Phys Chem B. 2013;117:3829–3840.10.1021/jp312238d
  • Rossetto HL, Bowen J, Kendall K. Adhesion of alumina surfaces through confined water layers containing various molecules. Langmuir. 2012;28:4648–4653.10.1021/la2045064
  • Pasarín IS, Yang M, Bovet N, et al. Molecular ordering of ethanol at the calcite surface. Langmuir. 2012;28:2545–2550.10.1021/la2021758
  • Wu D, Navrotsky A. Probing the energetics of organic–nanoparticle interactions of ethanol on calcite. Proc Nat Acad Sci. 2015;112:5314–5318.10.1073/pnas.1505874112
  • Sung J, Waychunas GA, Shen YR. Surface-induced anisotropic orientations of interfacial ethanol molecules at air/sapphire(11̅02) and ethanol/sapphire(11̅02) interfaces. J Phys Chem Lett. 2011;2:1831–1835.10.1021/jz2006397
  • Wang C, Zhao L, Zhang D, et al. Upright or flat orientations of the ethanol molecules on a surface with charge dipoles and the implication for wetting behavior. J Phys Chem C. 2014;118:1873–1878.10.1021/jp4062016
  • Chen JG, Wang CL, Wei N, et al. 3D flexible water channel: stretchability of nanoscale water bridge. Nanoscale. 2016;8:5676–5681.10.1039/C5NR08072 J
  • Cheh J, Gao Y, Wang C, et al. Ice or water: thermal properties of monolayer water adsorbed on a substrate. J Stat Mech: Theory Exp. 2013;2013:P06009.10.1088/1742-5468/2013/06/P06009
  • Sun CQ, Sun Y. The attribute of water. Singapore: Springer; 2016.10.1007/978-981-10-0180-2
  • Huang Y, Zhang X, Ma Z, et al. Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord Chem Rev. 2015;285:109–165.10.1016/j.ccr.2014.10.003
  • Cao W, Lu L, Huang L, et al. Molecular behavior of water on titanium dioxide nanotubes: a molecular dynamics simulation study. J Chem Eng Data. 2016;61:4131–4138.10.1021/acs.jced.6b00551
  • Huang L, Gubbins KE, Li L, et al. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations. Langmuir. 2014;30:14832–14840.10.1021/la5037426
  • Hamada I, Meng S. Water wetting on representative metal surfaces: improved description from van der Waals density functionals. Chem Phys Lett. 2012;521:161–166.10.1016/j.cplett.2011.11.070
  • Radha B, Esfandiar A, Wang F, et al. Molecular transport through capillaries made with atomic-scale precision. Nature. 2016;538:222–225.10.1038/nature19363
  • Liu K, Wang C, Ma J, et al. Janus effect of antifreeze proteins on ice nucleation. Proc Nat Acad Sci. 2016;113:14739.10.1073/pnas.1614379114
  • Wang C, Lu H, Wang Z, et al. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys Rev Lett. 2009;103:137801.10.1103/PhysRevLett.103.137801
  • Wang C, Yang Y, Fang H. Recent advances on “ordered water monolayer that does not completely wet water” at room temperature. Sci China: Phys Mech Astron. 2014;57:802–809.
  • Wang C, Zhou B, Tu Y, et al. Critical dipole length for the wetting transition due to collective water–dipoles interactions. Sci Rep. 2012;2:358.
  • Wang C, Zhou B, Xiu P, et al. Effect of surface morphology on the ordered water layer at room temperature. J Phys Chem C. 2011;115:3018–3024.10.1021/jp108595d
  • Xu Z, Gao Y, Wang C, et al. Nanoscale hydrophilicity on metal surfaces at room temperature: coupling lattice constants and crystal faces. J Phys Chem C. 2015;119:20409–20415.10.1021/acs.jpcc.5b04237
  • Qi W, Chen J, Yang J, et al. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations. J Phys Chem B. 2013;117:7967–7971.10.1021/jp3120435
  • Tocci G, Joly L, Michaelides A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 2014;14:6872–6877.10.1021/nl502837d
  • Ho TA, Papavassiliou DV, Lee LL, et al. Liquid water can slip on a hydrophilic surface. Proc Nat Acad Sci. 2011;108:16170–16175.10.1073/pnas.1105189108
  • Huang DM, Sendner C, Horinek D, et al. Water slippage versus contact angle: a quasiuniversal relationship. Phys Rev Lett. 2008;101:226101.10.1103/PhysRevLett.101.226101
  • Wang CL, Wen BH, Tu YS, et al. Friction reduction at a superhydrophilic surface: role of ordered water. J Phys Chem C. 2015;119:11679–11684.10.1021/acs.jpcc.5b02024
  • Chen J, Gao Y, Wang C, et al. Impeded mass transportation due to defects in thermally driven nanotube nanomotor. J Phys Chem C. 2015;119:17362–17368.10.1021/acs.jpcc.5b02235
  • Cygan RT, Liang J-J, Kalinichev AG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108:1255–1266.10.1021/jp0363287
  • Ren X, Zhou B, Wang C. Water-induced ethanol dewetting transition. J Chem Phys. 2012;137:024703.10.1063/1.4733719
  • Ren X, Wang C, Zhou B, et al. Ethanol promotes dewetting transition at low concentrations. Soft Matter. 2013;9:4655–4660.10.1039/c3sm00049d
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718.10.1002/(ISSN)1096-987X
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101.10.1063/1.2408420
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.10.1063/1.464397
  • Laurette S, Treizebre A, Affouard F, et al. Subterahertz characterization of ethanol hydration layers by microfluidic system. Appl Phys Lett. 2010;97:111904.10.1063/1.3488832

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.