185
Views
3
CrossRef citations to date
0
Altmetric
Articles

Biomethane storage in activated carbons: a grand canonical Monte Carlo simulation study

, , &
Pages 1142-1152 | Received 26 Jan 2017, Accepted 09 Jul 2017, Published online: 27 Jul 2017

References

  • Andriani D, Wresta A, Atmaja TD, et al. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol. 2014;172:1909–1928.10.1007/s12010-013-0652-x
  • Ryckebosch E, Drouillon M, Veruaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy. 2011;35:1633–1645.10.1016/j.biombioe.2011.02.033
  • Narges B, Jalal A. Adsorption of methane on corn cobs based activated carbon. Chem Eng Res Des. 2011;89:2038–2043.
  • Gomez-Gualdron DA, Wilmer CE, Farha OK, et al. Exploring the limits of methane storage and delivery in nanoporous materials. J Phys Chem C. 2014;118:6941–6951.10.1021/jp502359q
  • Mason JA, Oktawiec J, Taylor MK, et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature. 2015;527:357.10.1038/nature15732
  • Delavar M, Ghoreyshi AA, Jahanshahi M, et al. Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material. RSC Adv. 2012;2:4490–4497.10.1039/c2ra01095j
  • Lu L, Wang S, Müller EA, et al. Adsorption and separation of CO2/CH4 mixtures using nanoporous adsorbents by molecular simulation. Fluid Phase Equilib. 2014;362:227–234.10.1016/j.fluid.2013.10.013
  • Zhou H, Xie J, Liu B, et al. Molecular simulation of methane adsorption in activated carbon: the impact of pore structure and surface chemistry. Mol Simul. 2016;42:776–782.10.1080/08927022.2015.1089995
  • Luo J, Liu Y, Jiang C, et al. Experimental and modeling study of methane adsorption on activated carbon derived from anthracite. J Chem Eng Data. 2011;56:4919–4926.10.1021/je200834p
  • Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater. 2006;18:2073–2094.10.1002/(ISSN)1521-4095
  • Pan HY, Yi Y, Lin Q, et al. Effect of surface chemistry and textural properties of activated carbons for CH4 selective adsorption through low-concentration coal bed methane. J Chem Eng Data. 2016;61:2120–2127.10.1021/acs.jced.6b00066
  • Ye Q, Yan S, Liu D, et al. Methane adsorption in several series of newly synthesised metal-organic frameworks: a molecular simulation study. Mol Simul. 2010;36:682–692.10.1080/08927021003720538
  • Spanopoulos I, Tsangarakis C, Klontzas E, et al. Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J Am Chem Soc. 2016;138:1568–1574.10.1021/jacs.5b11079
  • Zhou H, Zhu S, Honma I, et al. Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chem Phys Lett. 2004;396:252–255.10.1016/j.cplett.2004.07.120
  • Saha D, Deng S. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci. 2010;345:402–409.10.1016/j.jcis.2010.01.076
  • Di Biase E, Sarkisov L. Systematic development of predictive molecular models of high surface area activated carbons for adsorption applications. Carbon. 2013;64:262–280.10.1016/j.carbon.2013.07.061
  • Chen JJ, Li WW, Li XL, et al. Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation. Environ Sci Technol. 2012;46:10341–10348.10.1021/es301774g
  • Oberlin A, Villey M, Combaz A. Influence of elemental composition on carbonization. Carbon. 1980;18:347–353.10.1016/0008-6223(80)90006-8
  • Lu X, Jin D, Wei S, et al. Competitive adsorption of a binary CO2/CH4 mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale. 2015;7:1002–1012.10.1039/C4NR05128A
  • Gelb LD, Gubbins K. Pore size distributions in porous glasses: a computer simulation study. Langmuir. 1999;15:305–308.10.1021/la9808418
  • Palmer JC, Moore JD, Roussel TJ, et al. Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study. Phys Chem Chem Phys. 2011;13:3985–3996.10.1039/c0cp02281k
  • Wang S, Lu L, Wu D, et al. Molecular simulation study of the adsorption and diffusion of a mixture of CO2/CH4 in activated carbon: effect of textural properties and surface chemistry. J Chem Eng Data. 2016;61:4139–4147.10.1021/acs.jced.6b00554
  • Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035.10.1021/ja00051a040
  • Potoff JJ, Siepmann JI. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 2001;47:1676–1682.10.1002/(ISSN)1547-5905
  • Sun Y, Spellmeyer D, Pearlman DA, et al. Simulation of the solvation free energies for methane, ethane, and propane and corresponding amino acid dipeptides: a critical test of the bond-PMF correction, a new set of hydrocarbon parameters, and the gas phase-water hydrophobicity scale. J Am Chem Soc. 1992;114:6798–6801.10.1021/ja00043a027
  • Fan W, Chakraborty A. Investigation of the interaction of polar molecules on graphite surface: prediction of isosteric heat of adsorption at zero surface coverage. J Phys Chem C. 2016;120:23490–23499.10.1021/acs.jpcc.6b06119
  • Allen M, Tildesley D, Press U. Computer simulation of liquids. Oxford: Oxford University; 1989.
  • Gupta A, Chempath S, Sanborn MJ, et al. Object-oriented programming paradigms for molecular modeling. Mol Simul. 2003;29:29–46.10.1080/0892702031000065719
  • Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. Phys Today. 2000;24:38.
  • Marco-Lozar JP, Kunowsky M, Suarez-Garcia F, et al. Activated carbon monoliths for gas storage at room temperature. Energy Environ Sci. 2012;5:9833–9842.10.1039/c2ee22769j
  • Appels L, Baeyens J, Degreve J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34:755–781.10.1016/j.pecs.2008.06.002
  • Albesa AG, Rafti M, Vicente JL, et al. Adsorption of CO2/CH4 mixtures in a molecular model of activated carbon through monte carlo simulations. Adsorpt Sci Technol. 2012;30:669–690.10.1260/0263-6174.30.8-9.669
  • Otowa T, Tanibata R, Itoh M. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon. Gas Sep Purif. 1993;7:241–245.10.1016/0950-4214(93)80024-Q
  • Aida T, Murayama I, Yamada K, et al. High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J Power Sources. 2007;166:462–470.10.1016/j.jpowsour.2007.01.037
  • Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A. 2014;3:71–77.
  • Gadipelli S, Guo ZX. Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci. 2015;69:1–60.10.1016/j.pmatsci.2014.10.004
  • Liu XW, Zhou L, Fu X, et al. Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4. Chem Eng Sci. 2007;62:1101–1110.10.1016/j.ces.2006.11.005
  • Jorge M, Christian Schumacher A, Seaton NA. Simulation study of the effect of the chemical heterogeneity of activated carbon on water adsorption. Langmuir. 2002;18:9296–9306.10.1021/la025846q
  • Figueiredo JL, Pereira MFR, Freitas MMA, et al. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379–1389.10.1016/S0008-6223(98)00333-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.