112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Some insights into the self-assembly patterns of two diamine derivatives as low molecular mass organogelators from molecular dynamics

, , , , , & show all
Pages 1019-1025 | Received 28 Dec 2016, Accepted 16 Jul 2017, Published online: 27 Jul 2017

References

  • O’regan B, Grfitzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353(6346):737–740.10.1038/353737a0
  • Mohd-Nasir SNF, Sulaiman MY, Ahmad-Ludin N, et al. Review of polymer, dye-sensitized, and hybrid solar cells. Int J Photoenergy. 2014;2014:1–12. DOI:10.1155/2014/370160
  • Sacco A, Lamberti A, Quaglio M, et al. Electric characterization and modeling of microfluidic-based dye-sensitized solar cell. Int J Photoenergy. 2012;2012:467–477.
  • Bai Y, Cao Y, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater. 2008;7(8):626–630.10.1038/nmat2224
  • Ito S, Zakeeruddin SM, Comte P, et al. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat Photonics. 2008;2(11):693–698.10.1038/nphoton.2008.224
  • Wu WQ, Xu YF, Rao HS, et al. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J Am Chem Soc. 2014;136(17):6437–6445.10.1021/ja5015635
  • Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem. 2014;6(3):242–247.10.1038/nchem.1861
  • Shi Y, Zhu C, Wang L, et al. Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem Mater. 2013;25(6):1000–1012.10.1021/cm400220q
  • Döbbelin M, Azcune I, Bedu M, et al. Synthesis of pyrrolidinium-based poly(ionic liquid) electrolytes with poly(ethylene glycol) side chains. Chem Mater. 2012;24(9):1583–1590.10.1021/cm203790z
  • Wu JH, Hao SC, Lan Z, et al. A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Func Mater. 2007;17(15):2645–2652.10.1002/(ISSN)1616-3028
  • Bisquert J, Cahen D, Hodes G, et al. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B. 2004;108(24):8106–8118.10.1021/jp0359283
  • Tao L, Huo ZP, Pan X, et al. Development and application of low molecular mass organogelators in quasi-solid-state dye-sensitized solar cells. Prog Chem. 2013;25(6):990–998.
  • Guo L, Pan X, Dai S. Electrolytes in dye-sensitized solar cells. Prog Chem. 2008;20(10):1595–1605.
  • Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97(8):3133–3160.10.1021/cr9700282
  • Hanabusa K, Hiratsuka K, Kimura M, et al. Easy preparation and useful character of organogel electrolytes based on low molecular weight gelator. Chem Mater. 1999;11(3):649–655.10.1021/cm980528r
  • Placin F, Desvergne JP, Lassègues JC. Organogel electrolytes based on a low molecular weight gelator: 2, 3-bis (n-decyloxy) anthracene. Chem Mater. 2001;13(1):117–121.10.1021/cm001118 h
  • Tao L, Huo Z, Dai S, et al. Stable quasi-solid-state dye-sensitized solar cell using a diamide derivative as low molecular mass organogelator. J Power Sources. 2014;262:444–450.10.1016/j.jpowsour.2014.03.128
  • Tao L, Huo Z, Dai S, et al. Stable quasi-solid-state dye-sensitized solar cells using novel low molecular mass organogelators and room-temperature molten salts. J Phys Chem C. 2014;118(30):16718–16726.10.1021/jp412717y
  • Tao L, Huo Z, Ding Y, et al. Gel electrolyte materials formed from a series of novel low molecular mass organogelators for stable quasi-solid-state dye-sensitized solar cells. J Phys Chem A. 2014;2(38):15921–15930.
  • Tomioka K, Sumiyoshi T, Narui S, et al. Molecular assembly and gelating behavior of didodecanoylamides of α,ω-alkylidenediamines. J Am Chem Soc. 2001;123(47):11817–11818.10.1021/ja0169318
  • Theodorou DN, Suter UW. Detailed molecular structure of a vinyl polymer glass. Macromolecules. 1985;18(7):1467–1478.10.1021/ma00149a018
  • Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, et al. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Genet. 1988;4(1):31–47.10.1002/(ISSN)1097-0134
  • Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–1688.10.1002/(ISSN)1096-987X
  • Pearlman DA, Case DA, Caldwell JW, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun. 1995;91(1–3):1–41.10.1016/0010-4655(95)00041-D
  • Case DA, Darden TA, Cheatham TE, et al. Amber 10. San Francisco: University of California; 2008.
  • Fox T, Kollman PA. Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B. 1998;102(41):8070–8079.10.1021/jp9717655
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092.10.1063/1.464397
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690.10.1063/1.448118
  • Miller III BR, McGee Jr. TD, Swails JM, et al. MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314–3321.10.1021/ct300418 h
  • Connolly ML. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983;221(4612):709–713.10.1126/science.6879170

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.