357
Views
13
CrossRef citations to date
0
Altmetric
Articles

Viscometric flow for a many-body dissipative particle dynamics (MDPD) fluid with Lees–Edwards boundary condition

, & ORCID Icon
Pages 213-224 | Received 22 May 2017, Accepted 31 Jul 2017, Published online: 17 Aug 2017

References

  • Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications. Phys Rep. 1992;222:145–197.10.1016/0370-1573(92)90090-M
  • Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Phys Chem. 1998;30:329–364.
  • Jacquin H, Kim B, Kawasaki K, et al. Brownian dynamics: from glassy to trivial. Phys Rev E. 2015;91:022130.10.1103/PhysRevE.91.022130
  • Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett (EPL). 1992;19:155.10.1209/0295-5075/19/3/001
  • Español P. Hydrodynamics from dissipative particle dynamics. Phys Rev E. 1995;52:1734.
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107(11):4423–4435.
  • Español P, Warren PB. Statistical mechanics of dissipative particle dynamics. Europhys Lett. 1995;30(4):191.
  • Marsh CA, Backx G, Ernst MH. Fokker–Planck–Boltzmann equation for dissipative particle dynamics. Europhys Lett. 1997;38(6):411.
  • Marsh CA, Backx G, Ernst MH. Static and dynamic properties of dissipative particle dynamics. Phys Rev E. 1997;56:1676.10.1103/PhysRevE.56.1676
  • Satoh A, Majima T. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method. J Colloid Interface Sci. 2005;283(1):251–266.
  • Fedosov DA, Caswell B, Karniadakis GE. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J. 2010;98:2215–2225.10.1016/j.bpj.2010.02.002
  • Fan X, Phan-Thien N, Chen S, et al. Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids. 2006;18:063102.10.1063/1.2206595
  • Spenley NA. Scaling laws for polymers in dissipative particle dynamics. Europhys Lett. 2000;49(4):534.
  • Chen S, Phan-Thien N, Fan XJ, et al. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. J Nonnewton Fluid Mech. 2004;118(1):65–81.
  • Pagonabarraga I, Frenkel D. Dissipative particle dynamics for interacting systems. J Chem Phys. 2001;115(11):5015–5026.
  • Trofimov SY, Nies ELF, Michels MAJ. Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys. 2002;117(20):9383–9394.
  • Pagonabarraga I, Frenkel D. Non-ideal DPD fluids. Mol Simul. 2000;25:3:167–175.
  • Warren PB. Hydrodynamic bubble coarsening in off-critical vapor–liquid phase separation. Phys Rev Lett. 2001;87:225702.10.1103/PhysRevLett.87.225702
  • Warren PB. Vapour–liquid coexistence in many-body dissipative particle dynamics. Phys Rev E. 2003;68:066702.10.1103/PhysRevE.68.066702
  • Ghoufi A, Malfreyt P. Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods. Phys Rev E. 2010;82:016706.
  • Ghoufi A, Malfreyt P. Mesoscale modeling of the water liquid–vapor interface: a surface tension calculation. Phys Rev E. 2011;83:051601.
  • Chen C, Gao C, Zhuang L, et al. A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage. Langmuir. 2010;26(12):9533–9538.
  • Zhao JY, Chen S, Liu Y. Droplets motion on chemically/topographically heterogeneous surfaces. Mol Simul. 2016;42(17):1452–1459.
  • Zhao JY, Chen S, Liu Y. Dynamical behaviors of droplet impingement and spreading on chemically heterogeneous surfaces. Appl Surf Sci. 2017;400:1.10.1016/j.apsusc.2017.04.003
  • Wang YX, Chen S. Numerical study on droplet sliding across micropillars. Langmuir. 2015;31(16):4673–4677.
  • Boromand A, Jamali S, Maia JM. Viscosity measurement techniques in dissipative particle dynamics. Comput Phys Commun. 2015;196:1.
  • Meier K, Laesecke A, Kabelac S. Transport coefficients of the Lennard–Jones model fluid. I. Viscosity. J Chem Phys. 2004;121(8):3671–3687.
  • Green MS. Markoff random processes and the statistical mechanics of time-dependent phenomena. J Chem Phys. 1952;20(8):1281–1295.
  • Kubo R. Statistical-mechanical theory of irreversible processes. I. J Phys Soc Jpn. 1957;12(6):570–586.
  • Arya G, Maginn EJ, Chang HC. Efficient viscosity estimation from molecular dynamics simulation via momentum impulse relaxation. J Chem Phys. 2000;113:2079.10.1063/1.482019
  • Backer JA, Lowe CP, Hoefsloot HCJ, et al. Poiseuille flow to measure the viscosity of particle model fluids. J Chem Phys. 2005;122:154503.10.1063/1.1883163
  • Fedosov DA, Karniadakis GE, Caswell B. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow. J Chem Phys. 2010;132:144103.10.1063/1.3366658
  • Chen S, Phan-Thien N, Khoo BC, et al. Flow around spheres by dissipative particle dynamics. Phys Fluids. 2006;18(10):103605.
  • Moshfegh A, Ahmadi G, Jabbarzadeh A. Thermostatic and rheological responses of DPD fluid to extreme shear under modified Lees–Edwards boundary condition. EurPhys J E. 2015;38:134.10.1140/epje/i2015-15134-0
  • Moshfegh A, Jabbarzadeh A. Modified Lees–Edwards boundary condition for dissipative particle dynamics: hydrodynamics and temperature at high shear rates. Mol Simul. 2015;41(15):1264–1277.
  • Evans GT. Dissipative particle dynamics: transport coefficients. J Chem Phys. 1999;110(3):1338–1342.
  • Masters AJ, Warren PB. Kinetic theory for dissipative particle dynamics: the importance of collisions. Europhys Lett (EPL). 1999;48:1.10.1209/epl/i1999-00105-4
  • Chaudhri A, Lukes JR. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics. Phys Rev E. 2010;81:026707.10.1103/PhysRevE.81.026707
  • Visser DC, Hoefsloot HCJ, Iedema PD. Modelling multi-viscosity systems with dissipative particle dynamics. J Comput Phys. 2006;214(2):491–504.
  • Jung G, Schmid F. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions. J Chem Phys. 2016;144:204104.10.1063/1.4950760
  • Jamali S, Boromand A, Khani S, et al. Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory–Huggins theory. J Chem Phys. 2015;142:164902.10.1063/1.4919303
  • Yamada T, Yuan J, Sunden BÅ. Application of many-body dissipative particle dynamics to determine liquid characteristics. Int J Numer Methods Heat Fluid Flow. 2015;25(7):1619–1637.
  • Chatterjee A. Modification to Lees–Edwards periodic boundary condition for dissipative particle dynamics simulation with high dissipation rates. Mol Simul. 2007;33(15):1233–1236.
  • Lowe C. An alternative approach to dissipative particle dynamics. Europhys Lett (EPL). 1999;47:145.10.1209/epl/i1999-00365-x
  • Stoyanov SD, Groot RD. From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat. J Chem Phys. 2005;122:114112.10.1063/1.1870892
  • Arienti M, Pan W, Li X, et al. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J Chem Phys. 2011;134:204114.10.1063/1.3590376
  • Ghoufi A, Malfreyt P. Coarse grained simulations of the electrolytes at the water-air interface from many body dissipative particle dynamics. J Chem Theory Comput. 2012;8(3):787–791.
  • Lees AW, Edwards F. The computer study of transport process under extreme conditions. J Phys C. 1972;5:1921.10.1088/0022-3719/5/15/006
  • Chen S, Jin Y, Zhang M, et al. Imposing Lees–Edwards boundary conditions in dissipative particle dynamics. J Tongji Univ(Nat Sci). 2012;40:137–142.
  • Pan D, Hu J, Shao X. Lees–Edwards boundary condition for simulation of polymer suspension with dissipative particle dynamics method. Mol Simul. 2016;42(4):328–336.
  • Phan-Thien N. Understanding viscoelasticity: an introduction to rheology, graduate texts in physics. Berlin: Springer-Verlag; 2013. ISBN 978-3-642-32957-9.
  • Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17(3):338–343.
  • Irving JH, Kirkwood JG. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys. 1950;18(6):817–829.
  • Enrique DM, Guy G, Felipe B, et al. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J Chem Phys. 2005;123(13):134703.
  • Mo CJ, Yang LJ, Zhao F, et al. Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method. Phys Rev E. 2015;92:023008.10.1103/PhysRevE.92.023008
  • Pagonabarraga I, Hagen MHJ, Frenkel D. Self-consistent dissipative particle dynamics algorithm. Europhys Lett. 1998;42(4):377.
  • Masters AJ, Warren PB. Kinetic theory for dissipative particle dynamics: the importance of collisions. Europhys Lett (EPL). 1999;48:1.10.1209/epl/i1999-00105-4
  • Noguchi H, Gompper G. Transport coefficients of dissipative particle dynamics with finite time step. Europhys Lett (EPL). 2007;79:36002.10.1209/0295-5075/79/36002
  • Fan X, Phan-Thien N, Teng YN, et al. Microchannel flow of a macromolecular suspension. Phys Fluids. 2003;15(1):11–21.
  • Chen S, Phan-Thien N, Khoo BC, et al. Flow around spheres by dissipative particle dynamics. Phys Fluids. 2006;18:10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.