206
Views
8
CrossRef citations to date
0
Altmetric
Articles

The effect of high concentrations and orientations of Stone–Wales defects on the thermal conductivity of graphene nanoribbons

ORCID Icon &
Pages 236-242 | Received 16 Dec 2016, Accepted 06 Aug 2017, Published online: 31 Aug 2017

References

  • Ebrahimi S, Montazeri A, Rafii-Tabar H. Molecular dynamics study of a new mechanism for ripple formation on graphene nanoribbons at very low temperatures based on H2 physisorption. Solid State Commun. 2013;159:84–87.10.1016/j.ssc.2013.02.001
  • Montazeri A, Ebrahimi S, Rafii-Tabar H. A molecular dynamics investigation of buckling behaviour of hydrogenated graphene. Mol Simul. 2015;41:1212–1218.
  • Henwood D, Carey JD. Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys Rev B. 2007;75: 245413. 245410p.
  • Lukes J, Zhong H. Thermal conductivity of individual single-wall carbon nanotubes. J Heat Transfer. 2007;129:705–716.10.1115/1.2717242
  • Popova NA, Sheka EF. Mechanochemical reaction in graphane under uniaxial tension. J Phys Chem C. 2011;115:23745–23754.10.1021/jp207987v
  • Nika DL, Ghosh S, Pokatilov EP, et al. Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett. 2009;94:203013.
  • Nika DL, Pokatilov EP, Askerov AS, et al. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B. 2009;79:155413.10.1103/PhysRevB.79.155413
  • Seol JH, Jo I, Moore AL, et al. Two dimensional phonon transport in supported graphene. Science. 2010;328:213–216.10.1126/science.1184014
  • Cao JX, Yan XH, Xiao Y, et al. Thermal conductivity of zigzag single-walled carbon nanotubes: role of the Umklapp process. Phys Rev B. 2004;69:073407.10.1103/PhysRevB.69.073407
  • Che J, Çagin T III. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000;11:65–69.10.1088/0957-4484/11/2/305
  • Donadio D, Galli G. Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett. 2007;99:255502.10.1103/PhysRevLett.99.255502
  • Berber S, Kwon Y-K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84:4613–4616.10.1103/PhysRevLett.84.4613
  • Padgett CW, Brenner DW. Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 2004;4:1051–1053.10.1021/nl049645d
  • Yao Z, Wang J-S, Li B, et al. Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B. 2005;71:085417.10.1103/PhysRevB.71.085417
  • Lindsay L, Broido DA, Mingo N. Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys Rev B. 2007;80:125407.
  • Mingo N, Broido DA. Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Lett. 2005;5:1221–1225.10.1021/nl050714d
  • Thomas JA, Iutzi RU, McGaughey AJH. Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys Rev B. 2010;81:045413.10.1103/PhysRevB.81.045413
  • Wang J, Wang J-S. Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett. 2006;88:111909.10.1063/1.2185727
  • Zhu L, Li B. Low thermal conductivity in ultrathin carbon nanotube (2, 1). Nature. 2014;4:4917. doi: 10.1038/srep0491710.1038/srep04917
  • Girit ÇÖ, Meyer JC, Erni R, et al. Graphene at the edge: stability and dynamics. Science. 2009;323:1705–1708.10.1126/science.1166999
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.10.1126/science.1157996
  • Zhang C, Hao XL, Wang CX, et al. Thermal conductivity of graphene nanoribbons under shear deformation: a molecular dynamics simulation. Sci. Rep. 2017;7:41391–41398.
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87:215502.10.1103/PhysRevLett.87.215502
  • Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6:96–100.10.1021/nl052145f
  • Pierson HO. Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. Park Ridge (N.J): Noyes Publications; 1995. 417p.
  • Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. 2008;92:151911.
  • Yiğen S, Tayari V, Island JO, et al. Electronic thermal conductivity measurements in intrinsic graphene. Phys Rev B. 2013;47:241411(R).
  • Hu B, Yang L, Zhang Y. Asymmetric heat conduction in nonlinear lattices. Phys Rev Lett. 2006;97:124302.10.1103/PhysRevLett.97.124302
  • Hu J, Ruan X, Chen YP. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 2009;9:2730–2735.
  • Yang N, Zhang G, Li B. Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett. 2009;95:033107.
  • Fan H, Deng L, Yuan X, et al. Thermal conductivity and thermal rectification in H-terminated graphene nanoribbons. RSC Adv. 2015;5:38001–38005.10.1039/C5RA05154A
  • Xiao JR, Staniszewski J, Gillespie JW. Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct. 2009;88:602–609.10.1016/j.compstruct.2008.06.008
  • Fan BB, Yang XB, Zhang R. Anisotropic mechanical properties and Stone–Wales defects in graphene monolayer: a theoretical study. Phys Lett A. 2010;374:2781–2784.10.1016/j.physleta.2010.04.066
  • Xiaoa JR, Staniszewskia J, Gillespie JW. Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone–Wales defects. Mater Sci Eng A. 2010;527:715–723.10.1016/j.msea.2009.10.052
  • Lherbier A, Dubois SMM, Declerck X, et al. Two-dimensional graphene with structural defects: elastic mean free path. Phys Rev Lett. 2011;106:046803.10.1103/PhysRevLett.106.046803
  • Ansari R, Ajori S, Motevalli B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct. 2012;51:274–289.10.1016/j.spmi.2011.11.019
  • Jing N, Xue Q, Ling C, et al. Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation. RSC Adv. 2012;2:9124–9129.10.1039/c2ra21228e
  • Neek-Amal M, Peeters FM. Effect of grain boundary on the buckling of graphene nanoribbons. Appl Phys Lett. 2012;100:101905.10.1063/1.3692573
  • Baimova JA, Bo L, Dmitriev SV, et al. Effect of Stone–Thrower–Wales defect on structural stability of graphene at zero and finite temperatures. EPL (Europhys Lett). 2013;103:46001.10.1209/0295-5075/103/46001
  • Lehmann T, Ryndyk DA, Cuniberti G. Combined effect of strain and defects on the conductance of graphene nanoribbons. Phys Rev B. 2013;88:125420.10.1103/PhysRevB.88.125420
  • Wang S-P, Guo J-G, Zhou L-J. Influence of Stone–Wales defects on elastic properties of graphene nanofilms. Physica E. 2013;48:29–35.10.1016/j.physe.2012.11.002
  • Kotakoski J, Eder FR, Meyer JC. Atomic structure and energetics of large vacancies in graphene. Phys Rev B. 2014;89:201406(R).10.1103/PhysRevB.89.201406
  • Zhong WR, Zhang MP, Ai BQ, et al. Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett. 2011;98:113107.10.1063/1.3567415
  • Partovi-Azar P, Jand SP, Namiranian A, et al. Electronic features induced by Stone–Wales defects in zigzag and chiral carbon nanotubes. Comput Mater Sci. 2013;29:82–86.10.1016/j.commatsci.2013.05.050
  • Sun YJ, Ma F, Ma DY, et al. Stress-induced annihilation of Stone–Wales defects in graphene nanoribbons. J Phys D: Appl Phys. 2012;45:305303.10.1088/0022-3727/45/30/305303
  • Rodrigues JNB, Gonc¸alves PAD, Rodrigues NFG, et al. Zigzag graphene nanoribbon edge reconstruction with Stone–Wales defects. Phys Rev B. 2011;84:155435 (155415p).
  • Lusk MT, Wu DT, Carr LD. Graphene nanoengineering and the inverse Stone–Thrower–Wales defect. Phys Rev B. 2010;81:155444.10.1103/PhysRevB.81.155444
  • Ma J, Alfè D, Michaelides A, et al. Stone–Wales defects in graphene and other planar s p 2 -bonded materials. Phys Rev B. 2009;80:033407.10.1103/PhysRevB.80.033407
  • Wang C, Ding Y-h. Catalytically healing the Stone–Wales defects in graphene by carbon adatoms. J Mater Chem A. 2013;1:1885–1891.
  • He L, Guo S, Lei J, et al. The effect of Stone–Thrower–Wales defects on mechanical properties of graphene sheets – a molecular dynamics study. Carbon. 2014;75:124–132.
  • Chandra N, Namilae S, Shet C. Local elastic properties of carbon nanotubes in the presence of Stone–Wales defects. Phys Rev B. 2004;69:094101.10.1103/PhysRevB.69.094101
  • Ng TY, Yeo JJ, Liu ZS. A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone–Thrower–Wales defects. Carbon. 2012;50:4887–4893.
  • Wang C, Liu Y, Lib L, et al. Anisotropic thermal conductivity of graphene wrinkles. Nanoscale. 2014;6:5703–5707.10.1039/C4NR00423J
  • Müller-Plathe F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E. 1999;59:4894–4898.10.1103/PhysRevE.59.4894
  • Müller-Plathe F, Reith D. Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients. Comput Theor Polym Sci. 1999;9:203–209.10.1016/S1089-3156(99)00006-9
  • Bordat P, Müller-Plathe F. The shear viscosity of molecular fluids: a calculation by reverse nonequilibrium molecular dynamics. J Chem Phys. 2002;116:3362–3369.10.1063/1.1436124
  • Zhang M, Lussetti E, de Souza LE, et al. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J Phys Chem B. 2005;109:15060–15067.10.1021/jp0512255
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112:6472–6486.10.1063/1.481208
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.10.1006/jcph.1995.1039
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York (NY): Oxford University Press; 1986.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.10.1103/PhysRevA.31.1695
  • Ebrahimi S. Influence of Stone–Wales defects orientations on stability of graphene nanoribbons under a uniaxial compression strain. Solid State Commun. 2015;220:17–20.10.1016/j.ssc.2015.06.020
  • Chien SK, Yang YT, Chen CK. Influence of hydrogen functionalization on thermal conductivity of graphene: nonequilibrium molecular dynamics simulations. Appl Phys Lett. 2011;98:033107.10.1063/1.3543622
  • Dickey JM, Paskin A. Computer simulation of the lattice dynamics of solids. Phys Rev. 1969;188:1407–1418.10.1103/PhysRev.188.1407
  • Li B, Lan J, Wang L. Interface thermal resistance between dissimilar anharmonic lattices. Phys Rev Lett. 2005;95:104302.10.1103/PhysRevLett.95.104302

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.