1,987
Views
14
CrossRef citations to date
0
Altmetric
Articles

Self-assembly of polymer-like structures of magnetic colloids: Langevin dynamics study of basic topologies

ORCID Icon, , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 507-515 | Received 29 Jul 2017, Accepted 04 Sep 2017, Published online: 28 Sep 2017

References

  • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–2421.
  • Thiruvengadathan R, Korampally V, Ghosh A, et al. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys. 2013;76:066501.
  • Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–113.
  • Singamaneni S, Bliznyuk VN, Binek C, et al. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J Mater Chem. 2011;21:16819–16845.
  • Colombo M, Carregal-Romero S, Casula MF, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41:4306–4334.
  • Vékás L, Avdeev M, Bica D. Magnetic nanofluids: synthesis and structure. In: Shi D, editor. Nanoscience in biomedicine. Springer: Berlin Heidelberg; 2009. p. 650–728.
  • Odenbach S, editor. Colloidal magnetic fluids. Vol. 763 of Lecture notes in physics, Berlin: Springer-Verlag; 2009.
  • Park BJ, Fang FF, Choi HJ. Magnetorheology: materials and application. Soft Matter. 2010;6:5246–5253.
  • Torres-Diaz I, Rinaldi C. Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter. 2014;10:8584–8602.
  • Klokkenburg M, Vonk C, Claesson EM, et al. Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. J Am Chem Soc. 2004;126:16706–16707.
  • Klokkenburg M, Dullens RPA, Kegel WK, et al. Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids. Phys Rev Lett. 2006;96:037203.
  • Furst EM, Gast AP. Micromechanics of dipolar chains using optical tweezers. Phys Rev Lett. 1999 May;82:4130–4133.
  • Kantorovich S, Ivanov AO, Rovigatti L, et al. Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density. Phys Rev Lett. 2013;110:148306.
  • Kantorovich SS, Ivanov AO, Rovigatti L, et al. Temperature-induced structural transitions in self-assembling magnetic nanocolloids. Phys Chem Chem Phys. 2015;17:16601–16608.
  • Zrínyi M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym Sci. 2000;278:98–103.
  • Thévenot J, Oliveira H, Sandre O, et al. Magnetic responsive polymer composite materials. Chem Soc Rev. 2013;42:7099–7116.
  • Odenbach S. Microstructure and rheology of magnetic hybrid materials. Arch Appl Mech. 2016;86:269–279.
  • Goubault C, Jop P, Fermigier M, et al. Flexible magnetic filaments as micromechanical sensors. Phys Rev Lett. 2003;91:260802.
  • Dreyfus R, Baudry J, Roper ML, et al. Microscopic artificial swimmers. Nature. 2005;437:862–865.
  • \={E}rglis K, Zhulenkovs D, Sharipo A, et al. Elastic properties of dna linked flexible magnetic filaments. J Phys-Condens Mat. 2008;20:204107.
  • Benkoski JJ, Breidenich JL, Uy OM, et al. Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies. J Mater Chem. 2011;21:7314–7325.
  • Hill LJ, Pyun J. Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl Mater Interfaces. 2014;6:6022–6032.
  • Corr SA, Byrne SJ, Tekoriute R, et al. Linear assemblies of magnetic nanoparticles as mri contrast agents. J Am Chem Soc. 2008;130:4214–4215.
  • Wang H, Yu Y, Sun Y, et al. Magnetic nanochains: a review. Nano. 2011;06:1–17.
  • Tokarev A, Gu Y, Zakharchenko A, et al. Reconfigurable anisotropic coatings via magnetic field-directed assembly and translocation of locking magnetic chains. Adv Funct Mater. 2014;24:4738–4745.
  • Sánchez PA, Pyanzina ES, Novak EV, et al. Supramolecular magnetic brushes: the impact of dipolar interactions on the equilibrium structure. Macromolecules. 2015;48:7658–669.
  • Sánchez PA, Pyanzina ES, Novak EV, et al. Magnetic filament brushes: tuning the properties of a magnetoresponsive supramolecular coating. Faraday Discuss. 2016;186:241–263.
  • Pyanzina ES, Sánchez PA, Cerdà JJ, et al. Scattering properties and internal structure of magnetic filament brushes. Soft Matter. 2017;13:2590–2602.
  • Sánchez PA, Cerdà JJ, Sintes T, et al. The effect of links on the interparticle dipolar correlations in supramolecular magnetic filaments. Soft Matter. 2015;11:2963–2972.
  • Biswal SL, Gast AP. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles. Phys Rev E. 2003 Aug;68:021402.
  • Byrom J, Han P, Savory M, et al. Directing assembly of DNA-coated colloids with magnetic fields to generate rigid, semiflexible, and flexible chains. Langmuir. 2014;30:9045–9052.
  • Srivastava S, Nykypanchuk D, Fukuto M, et al. Two-dimensional dna-programmable assembly of nanoparticles at liquid interfaces. J Am Chem Soc. 2014;136:8323–8332.
  • Tian Y, Wang T, Liu W, et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral dna origami frames. Nat Nano. 2015;10:637–644.
  • Byrne SJ, Corr SA, Gun’ko YK, et al. Magnetic nanoparticle assemblies on denatured dna show unusual magnetic relaxivity and potential applications for MRI. Chem Commun. 2004;2560–2561.
  • Sarkar D, Mandal M. Static and dynamic magnetic characterization of DNA-templated chain-like magnetite nanoparticles. J Phys Chem C. 2012;116:3227–3234.
  • Cerdà JJ, Sánchez PA, Sintes T, et al. Phase diagram for a single flexible Stockmayer polymer at zero field. Soft Matter. 2013;9:7185–7195.
  • Cerdà JJ, Sánchez PA, Lüsebrink D, et al. Flexible magnetic filaments under the influence of external magnetic fields in the limit of infinite dilution. Phys Chem Chem Phys. 2016;18:12616–12625.
  • Wei J, Song F, Dobnikar J. Assembly of superparamagnetic filaments in external field. Langmuir. 2016;32:9321–9328.
  • Novak E, Rozhkov D, Sánchez P, et al. Self-assembly of designed supramolecular magnetic filaments of different shapes. J Magn Magn Mater. 2017;431:152–156.
  • Ronti M, Rovigatti L, Tavares JM, et al. Accurate free energy calculations for rings and chains formed by dipolar hard spheres. Soft Matter. 2017. submitted.
  • Weeber R, Kantorovich S, Holm C. Deformation mechanisms in 2d magnetic gels studied by computer simulations. Soft Matter. 2012;8:9923–9932.
  • Annunziata MA, Menzel AM, Löwen H. Hardening transition in a one-dimensional model for ferrogels. J Chem Phys. 2013;138:204906.
  • Tarama M, Cremer P, Borin DY, et al. Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields. Phys Rev E. 2014;90:042311.
  • Weeber R, Kantorovich S, Holm C. Ferrogels cross-linked by magnetic particles: field-driven deformation and elasticity studied using computer simulations. J Chem Phys. 2015;143:154901.
  • Pessot G, Weeber R, Holm C, et al. Towards a scale-bridging description of ferrogels and magnetic elastomers. J Phys: Condens Matter. 2015;27:325105.
  • Pessot G, Löwen H, Menzel AM. Dynamic elastic moduli in magnetic gels: normal modes and linear response. J Chem Phys. 2016;145:104904.
  • Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys. 1971;54:5237–5247.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 1st ed. Oxford Science Publications; Oxford: Clarendon Press; 1987.
  • Frenkel D, Smit B. Understanding molecular simulation. Academic Press; 2002.
  • Cerdà JJ, Kantorovich S, Holm C. Aggregate formation in ferrofluid monolayers: simulations and theory. J Phys-Condens Mat. 2008;20:204125.
  • Kantorovich S, Cerdà JJ, Holm C. Microstructure analyisis of monodisperse ferrofluid monolayers: theory and simulation. Phys Chem Chem Phys. 2008;10:1883–1895.
  • Limbach HJ, Arnold A, Mann BA, et al. ESPResSo - an extensible simulation package for research on soft matter systems. Comput Phys Commun. 2006;174:704–727.
  • Arnold A, Lenz O, Kesselheim S, et al. Espresso 3.1: Molecular dynamics software for coarse-grained models. In: Griebel M, Schweitzer MA, editors., Meshfree methods for partial differential equations vi, Vol. 763 of Lecture notes in computational science and engineering Springer: Berlin; 2013. p. 1–23.
  • Tartaglia P, Sciortino F. Association of limited valence patchy particles in two dimensions. J Phys: Condens Matter. 2010;22:104108.
  • Smallenburg F, Sciortino F. Liquids more stable than crystals in particles with limited valence and flexible bonds. Nat Phys. 2013;9:554–558.
  • Sánchez PA, Cerdà JJ, Sintes T, et al. Effects of the dipolar interaction on the equilibrium morphologies of a single supramolecular magnetic filament in bulk. J Chem Phys. 2013;139:044904.