605
Views
25
CrossRef citations to date
0
Altmetric
Articles

Structure and rheology of self-assembled aqueous suspensions of nanoparticles and wormlike micelles

, &
Pages 485-493 | Received 01 Aug 2017, Accepted 28 Sep 2017, Published online: 20 Oct 2017

References

  • Ezrahi S, Tuval E, Aserin A, et al. Daily applications of systems with wormlike micelles. In: Zana R, Kaler EW, editors. Giant micelles: properties and applications. Surfactant science series. Vol. 140. CRC Press; 2007. p. 515–544.
  • Suleimanov BA, Ismailov FS, Veliyev EF. Nanofluid for enhanced oil recovery. J Petrol Sci Eng. 2011;78:431–437.10.1016/j.petrol.2011.06.014
  • Sullivan P, Nelson EB, Anderson V, et al. Oilfield applications of giant micelles. In: Zana R, Kaler EW, editors. Giant micelles: properties and applications. Surfactant Science Series. Vol. 140. CRC Press; 2007. p. 453–472.
  • Cong T, Wani SN, Paynter PA, et al. Structure and optical properties of self-assembled multicomponent plasmonic nanogels. Appl Phys Lett. 2011;99:043112-1–043112-3.
  • Cates ME, Candau SJ. Statics and dynamics of worm-like surfactant micelles. J Phys: Condens Matter. 1990;2:6869–6892.10.1088/0953-8984/2/33/001
  • Doi M, Edwards SF. The theory of polymer dynamics. Vol. 73. Oxford: Oxford University Press; 1988.
  • Appell J, Porte G, Khatory A, et al. Static and dynamic properties of a network of wormlike surfactant micelles (cetylpyridinium chlorate in sodium chlorate brine). J Phys II. 1992;2:1045–1052.10.1051/jp2:1992104
  • Dhakal S, Sureshkumar R. Anomalous diffusion and stress relaxation in surfactant micelles. Phys Rev E. 2017;96:012605.10.1103/PhysRevE.96.012605
  • Liu CH, Pine DJ. Shear-induced gelation and fracture in micellar solutions. Phys Rev Lett. 1996;77:2121–2124.10.1103/PhysRevLett.77.2121
  • Miller E, Rothstein JP. Transient evolution of shear-banding wormlike micellar solutions. J Nonnewton Fluid Mech. 2007;143:22–37.10.1016/j.jnnfm.2006.12.005
  • Rehage H, Wunderlich I, Hoffmann H. Shear induced phase transitions in dilute aqueous surfactant solutions. In: Springer J, editor. Polymers as colloid systems. Berlin: Springer; 1985. p. 51–59.
  • Turner MS, Cates ME. Flow-induced phase-transitions in rod-like micelles. J Phys: Condens Matter. 1992;4:3719–3741.10.1088/0953-8984/4/14/005
  • Vasudevan M, Buse E, Lu DL, et al. Irreversible nanogel formation in surfactant solutions by microporous flow. Nat Mater. 2010;9:436–441.10.1038/nmat2724
  • Vasudevan M, Shen A, Khomami B, et al. Self-similar shear thickening behavior in CTAB/NaSal surfactant solutions. J Rheol. 2008;52:527–550.10.1122/1.2833594
  • Wunderlich I, Hoffmann H, Rehage H. Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta. 1987;26:532–542.10.1007/BF01333737
  • Dhakal S, Sureshkumar R. Topology, length scales, and energetics of surfactant micelles. J Chem Phys. 2015;143:024905-1–024905-11.
  • Oelschlaeger C, Suwita P, Willenbacher N. Effect of counterion binding efficiency on structure and dynamics of wormlike micelles. Langmuir. 2010;26:7045–7053.10.1021/la9043705
  • Sangwai AV, Sureshkumar R. Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles. Langmuir. 2011;27:6628–6638.10.1021/la2006315
  • Sangwai AV, Sureshkumar R. Binary interactions and salt-induced coalescence of spherical micelles of cationic surfactants from molecular dynamics simulations. Langmuir. 2012;28:1127–1135.10.1021/la203745d
  • Bandyopadhyay R, Sood AK. Effect of silica colloids on the rheology of viscoelastic gels formed by the surfactant cetyl trimethylammonium tosylate. J Colloid Interface Sci. 2005;283:585–591.10.1016/j.jcis.2004.09.038
  • Cong T. Structure, rheology and optical properties of plasmonic fluids [dissertation]. Syracuse (NY): Syracuse University; 2013.
  • Favoriti P, Mannebach MH, Treiner C. Surface interactions on silica particles between a cationic surfactant and sodium salicylate. Langmuir. 1996;12:4691–4696.10.1021/la960180j
  • Helgeson ME, Hodgdon TK, Kaler EW, et al. Formation and rheology of viscoelastic ‘double networks’ in wormlike micelle-nanoparticle mixtures. Langmuir. 2010;26:8049–8060.10.1021/la100026d
  • Helgeson ME, Wagner NJ. Colloidal interactions mediated by end-adsorbing polymer-like micelles. J Chem Phys. 2011;135:084901-1–084901-11.
  • Jódar-Reyes AB, Leermakers FAM. Can linear micelles bridge between two surfaces? J Phys Chem B. 2006;110:18415–18423.10.1021/jp062839s
  • Jódar-Reyes AB, Leermakers FAM. Self-consistent field modeling of linear nonionic micelles. J Phys Chem B. 2006;110:6300–6311.10.1021/jp056737y
  • Nettesheim F, Liberatore MW, Hodgdon TK, et al. Influence of nanoparticle addition on the properties of wormlike micellar solutions. Langmuir. 2008;24:7718–7726.10.1021/la800271m
  • Padding JT, Boek ES, Briels WJ. Rheology of wormlike micellar fluids from Brownian and molecular dynamics simulations. J Phys: Condens Matter. 2005;17:S3347–S3353.10.1088/0953-8984/17/45/021
  • Sambasivam A, Sangwai AV, Sureshkumar R. Dynamics and scission of rodlike cationic surfactant micelles in shear flow. Phys Rev Lett. 2015;114:158302.10.1103/PhysRevLett.114.158302
  • Dhakal S, Sureshkumar R. Uniaxial extension of surfactant micelles: counterion mediated chain stiffening and a mechanism of rupture by flow-induced energy redistribution. ACS Macro Lett. 2016;5:108–111.10.1021/acsmacrolett.5b00761
  • Sambasivam A, Sangwai AV, Sureshkumar R. Self-assembly of nanoparticle-surfactant complexes with rodlike micelles: a molecular dynamics study. Langmuir. 2016;32:1214–1219.10.1021/acs.langmuir.5b03689
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.10.1006/jcph.1995.1039
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.10.1021/jp071097f
  • Piella J, Bastús NG, Puntes V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater. 2016;28:1066–1075.10.1021/acs.chemmater.5b04406
  • Buneman O. Computer simulation using particles (R. W. Hockney and J. W. Eastwood). SIAM Rev. 1983;25:425–426.10.1137/1025102
  • Pollock EL, Glosli J. Comments on P(3)M, FMM, and the Ewald method for large periodic Coulombic systems. Comput Phys Commun. 1996;95:93–110.10.1016/0010-4655(96)00043-4
  • Müller-Plathe F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E. 1999;59:4894–4898.10.1103/PhysRevE.59.4894
  • Kelkar MS, Rafferty JL, Maginn EJ, et al. Prediction of viscosities and vapor-liquid equilibria for five polyhydric alcohols by molecular simulation. Fluid Phase Equilib. 2007;260:218–231.10.1016/j.fluid.2007.06.033
  • Tenney CM, Maginn EJ. Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J Chem Phys. 2010;132:014103.10.1063/1.3276454
  • Lequeux F. Reptation of connected wormlike micelles. Europhysics Lett. 1992;19:675–681.10.1209/0295-5075/19/8/003
  • Hiemenz PC, Rajagopalan R. Principles of colloid and surface chemistry. 3rd ed. New-York (NY): Taylor & Francis; 1997.10.1201/9781315274287
  • Barnes HA. A review of the rheology of filled viscoelastic systems. Rheol Rev. 2003:1–36.
  • Ohl N, Gleissle W. The characterization of the steady-state shear and normal stress functions of highly concentrated suspensions formulated with viscoelastic liquids. J Rheol. 1993;37:381–406.10.1122/1.550449
  • Eppenga R, Frenkel D. Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys. 1984;52:1303–1334.10.1080/00268978400101951
  • López-González MR, Holmes WM, Callaghan PT. Rheo-NMR phenomena of wormlike micelles. Soft Matter. 2006;2:855–869.10.1039/B600978F
  • Osaki K, Inoue T, Isomura T. Stress overshoot of polymer solutions at high rates of shear; Polystyrene with bimodal molecular weight distribution. J Polym Sci, Part B: Polym Phys. 2000;38:2043–2050.10.1002/(ISSN)1099-0488

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.