984
Views
3
CrossRef citations to date
0
Altmetric
Articles

Emergence of order in self-assembly of the intrinsically disordered biomineralisation peptide n16N

, , , &
Pages 463-469 | Received 19 Jul 2017, Accepted 10 Nov 2017, Published online: 29 Nov 2017

References

  • Evans JS. ‘Tuning in’ to mollusk shell nacre- and prismatic-associated protein terminal sequences. implications for biomineralization and the construction of high performance inorganic--organic composites. Chem Rev. 2008;108:4455–4462.
  • Aizenberg J. New nanofabrication strategies: inspired by biomineralization. MRS Bull. 2010;4(35):323–330.
  • Kim S, Park CB. Bio-inspired synthesis of minerals for energy, environment, and medicinal applications. Adv Funct Mater. 2013;23:10–25.
  • Cheng Q, Jiang L, Tang Z. Bioinspired layered materials with superior mechanical performance. Acc Chem Res. 2014;47:1256–1266.
  • Lowenstam H. Minerals formed by organisms. Science. 1981;211:1126–1131.
  • Mann S. Mineralization in biological systems. In: Inorganic elements in biochemistry. Vol. 54, Structure and bonding. Berlin, Heidelberg: Springer; 1983. p. 125–174.
  • Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem. 2003;54:1–29.
  • He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater. 2003;2:552–558.
  • Bettencourt V, Guerra A. Growth increments and biomineralization process in cephalopod statoliths. J Exp Mar Biol Ecol. 2000;248:191–205.
  • Lowenstam HA, Weiner S. On biomineralization. New York (NY): Oxford University Press; 1989.
  • Dunker AK, Babu MM, Barbar E, et al. What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins. 2013;1. DOI:10.4161/idp.24157
  • Ball KA, Wemmer DE, Head-Gordon T. Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J Phys Chem B. 2014;118:6405–6416. DOI:10.1021/jp410275y
  • Dunker AK, Brown CJ, Lawson JD, et al. Intrinsic disorder and protein function. Biochemistry. 2002;41:6573–6582.
  • Kalmar L, Homola D, Varga G, et al. Structural disorder in proteins brings order to crystal growth in biomineralization. Bone. 2012;51:528–534.
  • Brown AH, Rodger PM, Evans JS, et al. Equilibrium conformational ensemble of the intrinsically disordered peptide n16N: linking subdomain structures and function in nacre. Biomacromolecules. 2014;15:4467–4479.
  • Namba K. Roles of partly unfolded conformations in macromolecular self-assembly. Genes Cells. 2001;6:1–12.
  • Nogawa C, Baba H, Masaoka T, et al. Genetic structure and polymorphisms of the N16 gene in pinctada fucata. Gene. 2012;504:84–91.
  • Gardner L, Mills D, Wiegand A, et al. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster pinctada maxima. BMC Genomics. 2011;12:455–469.
  • Marie B, Joubert C, Tayalé A, et al. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci USA. 2012;109:20986–20991.
  • Montagnani C, Marie B, Marin F, et al. Pmarg-pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera. ChemBioChem. 2011;12:2033–2043.
  • Samata T, Hayashi N, Kono M, et al. A new matrix protein family related to the nacreous layer formation of pinctada fucata. FEBS Lett. 1999;462:225–229.
  • Collino S, Evans JS. Molecular specifications of a mineral modulation sequence derived from the aragonite-promoting protein n16. Biomacromolecules. 2008;9:1909–1918. pMID: 18558739.
  • Perovic I, Chang EP, Lui M, et al. A nacre protein, n16.3, self-assembles to form protein oligomers that dimensionally limit and organize mineral deposits. Biochemistry. 2014;53:2739–2748.
  • Ponce CB, Evans JS. Polymorph crystal selection by n16, an intrinsically disordered nacre framework protein. Crystal Growth Des. 2011;11:4690–4696.
  • Kim IW, DiMasi E, Evans JS. Identification of mineral modulation sequences within the nacre-associated oyster shell protein, n16. Crystal Growth Des. 2004;4:1113–1118.
  • Kim I, Darragh M, Orme C, et al. Molecular ‘tuning’ of crystal growth by nacre-associated polypeptides. Crystal Growth Des. 2006;6:5–10.
  • Delak K, Collino S, Evans JS. Expected and unexpected effects of amino acid substitutions on polypeptide-directed crystal growth. Langmuir. 2007;23:11951–11955.
  • Metzler RA, Kim IW, Delak K, et al. Probing the organic-mineral interface at the molecular level in model biominerals. Langmuir. 2008;24:2680–2687.
  • Keene EC, Evans JS, Estroff LA. Matrix interactions in biomineralization: Aragonite nucleation by an intrinsically disordered nacre polypeptide, n16N, associated with a β-chitin substrate. Crystal Growth Des. 2010;10:1383–1389.
  • Metzler RA, Evans JS, Killian CE, et al. Nacre protein fragment templates lamellar aragonite growth. J Am Chem Soc. 2010;132:6329–6334.
  • Keene EC, Evans JS, Estroff LA. Silk fibroin hydrogels coupled with the n16N-β-chitin complex: An in vitro organic matrix for controlling calcium carbonate mineralization. Crystal Growth Des. 2010;10:5169–5175.
  • Amos FF, Ponce CB, Evans JS. Formation of framework nacre polypeptide supramolecular assemblies that nucleate polymorphs. Biomacromolecules. 2011;12:1883–1890.
  • Seto J, Picker A, Chen Y, et al. Nacre protein sequence compartmentalizes mineral polymorphs in solution. Crystal Growth Des. 2014;14:1501–1505.
  • Levi-Kalisman Y, Falini G, Addadi L, et al. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol. 2001;135:8–17.
  • Kim J, Straub JE, Keyes T. Statistical-temperature monte carlo and molecular dynamics algorithms. Phys Rev Lett. 2006;97:050601.
  • Linding R, Russell RB, Neduva V, et al. Globplot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 2003;31:3701–3708.
  • Rutter GO, Brown AH, Quigley D, et al. Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Phys Chem Chem Phys. 2015;17:31741–31749.
  • Bereau T, Deserno M. Generic coarse-grained model for protein folding and aggregation. J Chem Phys. 2009;130. DOI:10.1063/1.3152842
  • Piana S, Lindorff-Larsen K, Shaw DE. How robust are protein folding simulations with respect to force field parameterization? Biophys J. 2011;100:L47–L49.
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comp Phys. 1995;117:1–19.
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151.
  • Swendsen RH, Wang JS. Replica monte carlo simulation of spin-glasses. Phys Rev Lett. 1986;57:2607–2609.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. London: Academic Pr; 2002.
  • Berendsen H, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854.
  • Daura X, Gademann K, Jaun B, et al. Peptide folding: when simulation meets experiment. Angew Chem Int Ed. 1999;38:236–240.
  • Humphrey W, Dalke A, Schulten K. VMD -- visual molecular dynamics. J Mol Graph. 1996;14:33–38.