158
Views
3
CrossRef citations to date
0
Altmetric
Articles

Adsorption of size-polydisperse particles on sinusoidally corrugated surfaces

& ORCID Icon
Pages 494-506 | Received 18 Aug 2017, Accepted 08 Nov 2017, Published online: 01 Dec 2017

References

  • Efimenko K, Rackaitis M, Manias E, et al. Nested self-similar wrinkling patterns in skins. Nat Mater. 2005;4:293–297.10.1038/nmat1342
  • Wohl CJ, Belcher MA, Chen L, et al. Laser ablative patterning of copoly(imide siloxane)s generating superhydrophobic surfaces. Langmuir. 2010;26:11469–11478.10.1021/la100958r
  • Di Mundo R, Nardulli M, Milella A, et al. Cell adhesion on nanotextured slippery superhydrophobic substrates. Langmuir. 2011;27:4914–4921.10.1021/la200136t
  • Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311–3315.10.1021/bm060750 m
  • Mrksich M. A surface chemistry approach to studying cell adhesion. Chem Soc Rev. 2000;29:267–273.10.1039/a705397e
  • Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv Mater. 2014;26:1494–1533.10.1002/adma.201304431
  • Tseng P, Di Carlo D. Substrates with patterned extracellular matrix and subcellular stiffness gradients reveal local biomechanical responses. Adv Mater. 2014;26:1242–1247.10.1002/adma.v26.8
  • Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning. Adv Mater. 2013;25:5257–5286.10.1002/adma.201301762
  • Marino A, Ciofani G, Filippeschi C, et al. Two-photon polymerization of sub-micrometric patterned surfaces: investigation of cell-substrate interactions and improved differentiation of neuron-like cells. ACS Appl Mater Interfaces. 2013;5:13012–13021.10.1021/am403895 k
  • Sangeetha NM, Blanck C, Nguyen TTT, et al. Size-selective 2D ordering of gold nanoparticles using surface topography of self-assembled diamide template. ACS Nano. 2012;6:8498–8507.10.1021/nn302206 h
  • Bae W, Kim HN, Kim D, et al. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv Mater. 2014;26:675–700.10.1002/adma.201303412
  • Kolewe ME, Park H, Gray C, et al. 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture. Adv Mater. 2013;25:4459–4465.10.1002/adma.v25.32
  • Agarwal A, Farouz Y, Nesmith AP, et al. Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv Func Mater. 2013;23:3738–3746.10.1002/adfm.v23.30
  • Hanske C, Mueller MB, Bieber V, et al. The role of substrate wettability in nanoparticle transfer from wrinkled elastomers: fundamentals and application toward hierarchical patterning. Langmuir. 2012;28:16745–16750.10.1021/la304028f
  • Snell KE, Stéphant N, Pansu RB, et al. Nanoparticle organization through photoinduced bulk mass transfer. Langmuir. 2014;30:2926–2935.10.1021/la404988d
  • Driscoll MK, Sun X, Guven C, et al. Cellular contact guidance through dynamic sensing of nanotopography. ACS Nano. 2014;8:3546–3555.10.1021/nn406637c
  • Myan FQY, Walker J, Paramor O. The interaction of marine fouling organisms with topography of varied scale and geometry: a review. Biointerphases. 2013;8: 30.
  • Ditsche P, Wainwright DK, Summers AP. Attachment to challenging substrates – fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). J Exp Biol. 2014;217:2548–2554.10.1242/jeb.100149
  • Brzozowska AM, Parra-Velandia FJ, Quintana R, et al. Biomimicking micropatterned surfaces and their effect on marine biofouling. Langmuir. 2014;30:9165–9175.10.1021/la502006s
  • Liu L, Ercan B, Sun L, et al. Understanding the role of polymer surface nanoscale topography on inhibiting bacteria adhesion and growth. ACS Biomater Sci Eng. 2016;2:122–130.10.1021/acsbiomaterials.5b00431
  • Ning D, Duong B, Thomas G, et al. Mechanical and morphological analysis of cancer cells on nanostructured substrates. Langmuir. 2016;32:2718–2723.10.1021/acs.langmuir.5b04469
  • Chriso S, Bachhuka A, Diener KR, et al. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci Reports. 2016; 6:26207.
  • Sullivan T, Regan F. Marine diatom settlement on microtextured materials in static field trials. J Mater Sci. 2017;52:5846–5856.10.1007/s10853-017-0821-3
  • Brzozowska AM, Maassen S, Goh Zhi Rong RGZ, et al. Effect of variations in micropatterns and surface modulus on marine fouling of engineering polymers. ACS Appl Mater Interfaces. 2017;9:17508–17516.10.1021/acsami.6b14262
  • Magin CM, Cooper SP, Brennan AB. Non-toxic antifouling strategies. Mater Today. 2010;13:36–44.10.1016/S1369-7021(10)70058-4
  • Krishnan S, Weinman CJ, Ober CK. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 2008;18:3405–3413.10.1039/b801491d
  • Grozea CM, Walker GC. Approaches in designing non-toxic polymer surfaces to deter marine biofouling. Soft Matter. 2009;5:4088–4100.10.1039/b910899h
  • Chapman R, Ostuni E, Liang M, et al. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir. 2001;17:1225–1233.10.1021/la001222d
  • Therien-Aubin H, Chen L, Ober CK. Fouling-resistant polymer brush coatings. Polymer. 2011;52:5419–5425.10.1016/j.polymer.2011.09.017
  • Gunkel G, Weinhart M, Becherer T, et al. Effect of polymer brush architecture on antibiofouling properties. Biomacromol. 2011;12:4169–4172.10.1021/bm200943m
  • Dimitriou MD, Zhou Z, Yoo H, et al. A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. Langmuir. 2011;27:13762–13772.10.1021/la202509 m
  • Zhang Z, Chao T, Chen S, et al. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Zhang Z, Finlay JA, Wang L, et al. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir. 2009;25:13516–13521.10.1021/la901957k
  • Li G, Xue H, Gao C, et al. Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules. 2010;43:14–16.10.1021/ma902029s
  • Krishnan S, Wang N, Ober CK, et al. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: Attachment strength of the diatom Navicula and the green alga Ulva. Biomacromolecules. 2006;7:1449–1462.10.1021/bm0509826
  • Bhattacharjee A, Khan M, Kleiman M, Hochbaum AI. Effects of growth surface topography on bacterial signaling in coculture biofilms. ACS Appl. Mater. Interfaces. 2017;9:18531–18539.
  • Bers AV, Wahl M. The influence of natural surface microtopographies on fouling. Biofouling. 2004;20:43–51.10.1080/08927010410001655533
  • Koch K, Bhushan B, Jung YC, et al. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter. 2009;5:1386–1393.10.1039/b818940d
  • Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial. Adv Mater. 2002;14:1857–1860.10.1002/adma.200290020
  • Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting. Langmuir. 2005;21:8978–8981.10.1021/la050316q
  • Berntsson K, Andreasson H, Jonsson P, et al. Reduction of barnacle recruitment on micro-textured surfaces: analysis of effective topographic characteristics and evaluation of skin friction. Biofouling. 2000;16:245–261.10.1080/08927010009378449
  • Carman M, Estes T, Feinberg A, et al. Engineered antifouling microtopographies - correlating wettability with cell attachment. Biofouling. 2006;22:11–21.10.1080/08927010500484854
  • Schumacher JF, Carman ML, Estes TG, et al. Engineered antifouling microtopographies – effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling. 2007;23:55–62.10.1080/08927010601136957
  • Efimenko K, Finlay J, Callow ME, et al. Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl Mater Interfaces. 2009;1:1031–1040.10.1021/am9000562
  • Aldred N, Scardino A, Cavaco A, et al. Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement. Biofouling. 2010;26:287–299.10.1080/08927010903511626
  • Scardino A, Harvey E, De Nys R. Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling. 2006;22:55–60.10.1080/08927010500506094
  • Vasudevan R, Kennedy AJ, Merritt M, et al. Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surf B. 2014;117:225–232.10.1016/j.colsurfb.2014.02.037
  • Perera-Costa D, Bruque JM, González-Martín M, et al. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir. 2014;30:4633–4641.10.1021/la5001057
  • Grinthal A, Aizenberg J. Mobile interfaces: liquids as a perfect structural material for multifunctional, antifouling surfaces. Chem Mater. 2014;26:698–708.10.1021/cm402364d
  • Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci. 2003;100:10603–10606.
  • Decker JT, Kirschner CM, Long CJ, et al. Engineered antifouling microtopographies: an energetic model that predicts cell attachment. Langmuir. 2013;29:13023–13030.10.1021/la402952u
  • Decker JT, Sheats JT, Brennan AB. Engineered antifouling microtopographies: surface pattern effects on cell distribution. Langmuir. 2014;30:15212–15218.10.1021/la504215b
  • Schoch PK, Genzer J. Adsorption of ‘soft’ spherical particles onto sinusoidally-corrugated substrates. Soft Matter. 2014;10:7452–7458.10.1039/C4SM01610F
  • Schoch PK, Genzer J. Adsorption of multiple spherical particles onto sinusoidally corrugated substrates. Langmuir. 2014;30:9407–9417.10.1021/la502026 g
  • Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2011;2: 244.10.1038/ncomms1251

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.