859
Views
17
CrossRef citations to date
0
Altmetric
Articles

A density functional theory parameterised neural network model of zirconia

, & ORCID Icon
Pages 623-630 | Received 13 Mar 2017, Accepted 20 Jul 2017, Published online: 03 Jan 2018

References

  • Robert Kelly J, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dental Mater. 2008;24(3):289–298.
  • Yang C, Srinivasan S, Bocarsly AB, et al. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci. 2004;237(1–2):145–161.
  • Okamoto H, Obayashi H, Kudo T. Carbon monoxide gas sensor made of stabilized zirconia. Solid State Ionics. 1980;1(3):319–326.
  • Zieliński A, Sobieszczyk S. Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Int J Hydrogen Energy. 2011;36(14):8619–8629; 4th Asian Bio-Hydrogen Symposium.
  • Raveau B, Rao CNR. Transition metal oxides: structure, properties, and synthesis of ceramic oxides. New York (NY): Wiley-VCH; 1998.
  • Aldebert P, Traverse J-P. Structure and ionic mobility of zirconia at high temperature. J Amer Ceram Soc. 1985;68(1):34–40.
  • Teufer G. The crystal structure of tetragonal ZeO2. Acta Crystallogr. 1962 Nov;15(11):1187.
  • Howard CJ, Hill RJ, Reichert BE. Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallogr Sec B. 1988 Apr;44(2):116–120.
  • Kisi EH, Howard CJ, Hill RJ. Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J Amer Ceram Soc. 1989;72(9):1757–1760.
  • Jain A, Ong SP, Hautier G, et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002.
  • Jomard G, Petit T, Pasturel A, et al. First-principles calculations to describe zirconia pseudopolymorphs. Phys Rev B. 1999 Feb;59:4044–4052.
  • Foster AS, Sulimov VB, Lopez Gejo F, et al. Structure and electrical levels of point defects in monoclinic zirconia. Phys Rev B. 2001 Nov;64:224108.
  • Xia X. Computational modelling study of Yttria-stabilized Zirconia. University College London (University of London); 2010.
  • Ricca C, Ringuedé A, Cassir M, et al. A comprehensive dft investigation of bulk and low-index surfaces of ZrO2 polymorphs. J Comput Chem. 2015;36(1):9–21.
  • Perkins CM, Triplett BB, McIntyre PC, et al. Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl Phys Lett. 2001 Apr;78:2357.
  • Fischer D, Kersch A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles. Appl Phys Lett. 2008;92(1):012908.
  • Burke K. Perspective on density functional theory. J Chem Phys. 2012;136(15):150901.
  • Brooks BR, Bruccoleri RE, Olafson BD, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4(2):187–217.
  • Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Amer Chem Soc. 1992;114(25):10024–10035.
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Amer Chem Soc. 1995;117(19):5179–5197.
  • van Duin ACT, Dasgupta S, Lorant F, et al. Reaxff: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105(41):9396–9409.
  • Shan T-R, Devine BD, Kemper TW, et al. Charge-optimized many-body potential for the Hafnium/Hafnium oxide system. Phys Rev B. 2010 Mar;81:125328.
  • Blank TB, Brown SD, Calhoun AW, et al. Neural network models of potential energy surfaces. J Chem Phys. 1995;103(10):4129–4137.
  • Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett. 2004;395(4–6):210–215.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007 Apr;98:146401.
  • Behler J. Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Conden Matter. 2014;26(18):183001.
  • Artrith N, Behler J. High-dimensional neural network potentials for metal surfaces: a prototype study for copper. Phys Rev B. 2012 Jan;85:045439.
  • Artrith N, Kolpak AM. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 2014;14(5):2670–2676. PMID: 24742028.
  • Artrith N, Urban A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput Mater Sci. 2016;114:135–150.
  • Peterson A, Khorshidi A. Amp: atomistic machine-learning package. [cited 2000 Feb 25]. Available from: https://bitbucket.org/andrewpeterson/amp
  • Khorshidi A, Peterson A. Amp: a modular approach to machine learning in atomistic simulations. Comput Phys Commun. 2016;207:310–324.
  • Bahn SR, Jacobsen KW. An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng. 2002 May--Jun;4(3):56–66.
  • Larsen AH, Mortensen JJ, Blomqvist J, et al. The atomic simulation environment-a python library for working with atoms. J Phys Conden Matter. 2017;29(27):273002.
  • Kresse G, Hafner J. Abinitio molecular dynamics for liquid metals. Phys Rev B. 1993 Jan;47:558–561.
  • Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B. 1994 May;49:14251–14269.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996 Oct;54:11169–11186.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. Oct 1996;77:3865–3868.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple [Phys Rev Lett 1996;77:3865]. Phys Rev Lett. Feb 1997;78:1396–1396.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994 Dec;50:17953–17979.
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999 Jan;59:1758–1775.
  • Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B. 1976 Jun;13:5188–5192.
  • Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000;113(22):9978–9985.
  • Behler J. Constructing high-dimensional neural network potentials: a tutorial review. Int J Quantum Chem. 2015;115(16):1032–1050.
  • Artrith N, Morawietz T, Behler J. High-dimensional neural-network potentials for multicomponent systems: applications to zinc oxide. Phys Rev B. 2011 Apr;83:153101.
  • Malyi OI, Wu P, Kulish VV, et al. Formation and migration of oxygen and zirconium vacancies in cubic zirconia and zirconium oxysulfide. Solid State Ionics. 2012;212:117–122.
  • Alchagirov AB, Perdew JP, Boettger JC, et al. Reply to “comment on ‘energy and pressure versus volume: equations of state motivated by the stabilized jellium model’ ”. Phys Rev B. 2003 Jan;67:026103.
  • Verónica Ganduglia-Pirovano M, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep. 2007;62(6):219–270.
  • Foster AS, Sulimov VB, Lopez Gejo F, et al. Modelling of point defects in monoclinic zirconia. J Non Cryst Solids. 2002;303(1):101–107.
  • Brossmann U, Würschum R, Södervall U, et al. Oxygen diffusion in ultrafine grained monoclinic ZrO2. J Appl Phys. 1999;85(11):7646–7654.
  • Eichler A. Tetragonal y-doped zirconia: structure and ion conductivity. Phys Rev B. 2001 Oct;64:174103.
  • Bai X-M, Zhang Y, Tonks MR. Strain effects on oxygen transport in tetragonal zirconium dioxide. Phys Chem Chem Phys. 2013;15:19438–19449.
  • Zacate MO, Minervini L, Bradfield DJ, et al. Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ionics. 2000;128(1):243–254.
  • Schelling PK, Phillpot SR, Wolf D. Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J Amer Ceram Soc. 2001;84(7):1609–1619.
  • Boes JR, Groenenboom MC, Keith JA, et al. Neural network and Reaxff comparison for Au properties. Int J Quantum Chem. 2016;116(13):979–987.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.