120
Views
2
CrossRef citations to date
0
Altmetric
Articles

Salting-in of neopentane in the aqueous solutions of urea and glycine-betaine

, &
Pages 677-687 | Received 29 Oct 2016, Accepted 19 Jan 2018, Published online: 05 Feb 2018

References

  • Ben-Naim A. Hydrophobic interactions. New York (NY): Plenum; 1980.10.1007/978-1-4684-3545-0
  • Rick SW, Berne BJ. Free energy of the hydrophobic interaction from molecular dynamics simulations: the effects of solute and solvent polarizability. J Phys Chem B. 1997;101:10488–10493.10.1021/jp971579z
  • Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437:640–647.10.1038/nature04162
  • Choudhury N, Pettitt BM. The dewetting transition and the hydrophobic effect. J Am Chem Soc. 2007;129:4847–4852.10.1021/ja069242a
  • Tanford C. How protein chemists learned about the hydrophobic factors. Protein Sci. 1997;6:1358–1366.10.1002/pro.5560060627
  • Caballero-Herrera A, Nordstrand K, Berndt KD, et al. Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization. Biophys J. 2005;89:842–857.10.1529/biophysj.105.061978
  • Tafur MF, Saagar Vijayaragavan K, Heldt CL. Reduction of porcine parvovirus infectivity in the presence of protecting osmolytes. Antiviral Res. 2013;99:27–33.10.1016/j.antiviral.2013.04.019
  • Ferreira LA, Fan X, Madeira PP, et al. Analyzing the effects of protecting osmolytes on solute–water interactions by solvatochromic comparison method: II. Globular proteins. RSC Adv. 2015;5:59780–59791.10.1039/C5RA08612D
  • Yancey PH, Somero GN. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J. 1979;183:317–323.10.1042/bj1830317
  • Arakawa T, Ejima D, Kita Y, et al. Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmaceutical drugs. Biochim Biophys Acta. 2006;1764:1677–1687.10.1016/j.bbapap.2006.08.012
  • Khan SH, Ahmad N, Ahmad F, et al. Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB Life. 2010;62:891–895.10.1002/iub.v62.12
  • Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208:2819–2830.10.1242/jeb.01730
  • Weber DJ. Salinity and water stress.Vol. 44. Dordrecht: Springer Netherlands; 2009. p. 236.
  • Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea. Proc Nat Acad Sci. 2003;100:5142–5147.10.1073/pnas.0930122100
  • Idrissi A, Cinar E, Longelin S, et al. The effect of temperature on urea-urea interactions in water: a molecular dynamics simulation. J Mol Liq. 2004;110:201–208.10.1016/j.molliq.2003.09.015
  • Watlaufer DB, Malik SK, Stoller L, et al. Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies. J Am Chem Soc. 1964;86:508–514.10.1021/ja01057a045
  • Frank HS, Franks F. Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J Chem Phys. 1968;48:4746–4757.10.1063/1.1668057
  • Finer EG, Franks F, Tait MJ. Nuclear magnetic resonance studies of aqueous urea solutions. J Am Chem Soc. 1972;94:4424–4429.10.1021/ja00768a004
  • Vanzi F, Madan B, Sharp K. Effect of the protein denaturant urea and guanidinium on water structure: a structural and thermodynamic study. J Am Chem Soc. 1998;120:10748–10753.10.1021/ja981529n
  • Das A, Mukhopadhyay C. Urea-mediated protein denaturation: a consensus view. J Phys Chem B. 2009;113:12816–12824.10.1021/jp906350s
  • Nozaki Y, Tanford C. The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem. 1963;238:4074–4081.
  • Robinson DR, Jencks WP. The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. J Am Chem Soc. 1965;87:2462–2470.10.1021/ja01089a028
  • Alonso DOV, Dill KA. Solvent denaturation and stabilization of globular proteins. Biochemistry. 1991;30:5974–5985.10.1021/bi00238a023
  • Makhatadze GI, Privalov PL. Protein interactions with urea and guanidinium chloride: a calorimetric study. J Mol Biol. 1992;226:91–505.
  • Mountain RD, Thirumalai D. Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution. J Am Chem Soc. 2003;125:1950–1957.10.1021/ja020496f
  • Wallqvist A, Covell DG, Thirumalai D. Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. J Am Chem Soc. 1998;120:427–428.10.1021/ja972053v
  • O’Brein EP, Dima RI, Brooks B, et al. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J Am Chem Soc. 2007;129:7346–7353.
  • Lee ME, van der Vegt NFA. Does urea denature hydrophobic interactions? J Am Chem Soc. 2006;128:4948–4949.10.1021/ja058600r
  • Hua L, Zhou R, Thirumalai D, et al. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Nat Acad Sci. 2008;105:16928–16933.10.1073/pnas.0808427105
  • Zangi R, Zhou R, Berne BJ. Urea’s action on hydrophobic interactions. J Am Chem Soc. 2009;131:1535–1541.10.1021/ja807887 g
  • Wang A, Bolen DW. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry. 1997;36:9101–9108.10.1021/bi970247 h
  • Liu Y, Bolen DW. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 1995;34:12884–12891.10.1021/bi00039a051
  • Baskakov I, Bolen DW. Forcing thermodynamically unfolded proteins to fold. J Biol Chem. 1998;273:4831–4834.10.1074/jbc.273.9.4831
  • Bolen DW, Baskakov IV. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol. 2001;310:955–963.10.1006/jmbi.2001.4819
  • Zou Q, Bennion BJ, Daggett V, et al. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J Am Chem Soc. 2002;124:1192–1202.10.1021/ja004206b
  • Aburi M, Smith PE. A combined simulation and Kirkwood−Buff approach to quantify cosolvent effects on the conformational preferences of peptides in solution. J Phys Chem B. 2004;108:7382–7388.10.1021/jp036582z
  • Shimizu S. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Nat Acad Sci. 2004;101:1195–1199.10.1073/pnas.0305836101
  • Paul S, Patey GN. Structure and interaction in aqueous urea trimethylamine-N-oxide solutions. J Am Chem Soc. 2007;129:4476–4482.10.1021/ja0685506
  • Jiao Y, Smith PE. Fluctuation theory of molecular association and conformational equilibria. J Chem Phys. 2011;135:014502–014512.10.1063/1.3601342
  • Bennion BJ, Daggett V. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. Proc Nat Acad Sci. 2004;101:6433–6438.10.1073/pnas.0308633101
  • Rose G, Fleming P, Banavar J, et al. A backbone-based theory of protein folding. Proc Nat Acad Sci. 2006;103:16623–16633.10.1073/pnas.0606843103
  • Canchi DR, Jayasimha P, Rau DC, et al. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J Phys Chem B. 2012;116:12095–12104.10.1021/jp304298c
  • Canchi DR, García AE. Cosolvent effects on protein stability. Annu Rev Phys Chem. 2013;64:273–293.10.1146/annurev-physchem-040412-110156
  • Ganguly P, Hajari T, Shea JE, et al. Mutual exclusion of urea and trimethylamine N-oxide from amino acids in mixed solvent environment. J Phys Chem Lett. 2015;6:581–585.10.1021/jz502634 k
  • Moeser B, Horinek D. The role of the concentration scale in the definition of transfer free energies. Biophys Chem. 2015;196:68–76.10.1016/j.bpc.2014.09.005
  • Venkatesu P, Lee MJ, Lin H. Osmolyte counteracts urea-induced denaturation of α-chymotrypsin. J Phys Chem B. 2009;113:5327–5338.10.1021/jp8113013
  • Kumar N, Kishore N. Synergistic behavior of glycine betaine-urea mixture: a molecular dynamics study. J Chem Phys. 2013;139:115104–115109.10.1063/1.4821615
  • Kumar N, Kishore N. Protein stabilization and counteraction of denaturing effect of urea by glycine betaine. Biophys Chem. 2014;189:16–24.10.1016/j.bpc.2014.03.001
  • Shimizu S, Chan HS. Configuration-dependent heat capacity of pairwise hydrophobic interactions. J Am Chem Soc. 2001;123:2083–2084.10.1021/ja0034390
  • Shimizu S, Chan HS. Anti-cooperativity and cooperativity in hydrophobic interactions: three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Proteins Struct Funct Genet. 2002;48:15–30.10.1002/(ISSN)1097-0134
  • Shimizu S, Chan HS. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Proteins Struct Funct Genet. 2002;49:560–566.10.1002/(ISSN)1097-0134
  • Ikeguchi M, Nakamura S, Shimizu K. Molecular dynamics study on hydrophobic effects in aqueous urea solutions. J Am Chem Soc. 2001;123:677–682.10.1021/ja002064f
  • Trzesniak D, van der Vegt NFA, van Gunsteren WF. Computer simulation studies on the solvation of aliphatic hydrocarbons in 6.9M aqueous urea solution. Phys Chem Chem Phys. 2004;6:697–702.10.1039/b314105e
  • Oostenbrink C, van Gunsteren WF. Methane clustering in explicit water: effect of urea on hydrophobic interactions. Phys Chem Chem Phys. 2005;7:53–58.10.1039/b413167c
  • Athawale MV, Sarupria S, Garde S. Enthalpy−entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions. J Phys Chem B. 2008;112:5661–5670.10.1021/jp073485n
  • Ghosh T, Garcia AE, Garde S. Enthalpy and entropy contributions to the pressure dependence of hydrophobic interactions. J Chem Phys. 2002;116:2480–2486.10.1063/1.1431582
  • Sarma R, Paul S. Association of small hydrophobic solute in presence of the osmolytes urea and trimethylamine-N-oxide. J Phys Chem B. 2012;116:2831–2841.10.1021/jp2104402
  • Weerasinghe S, Smith PE. A Kirkwood-Buff derived force field for mixtures of urea and water. J Phys Chem B. 2003;107:3891–3898.10.1021/jp022049s
  • Holehouse AS, Garai K, Lyle N, et al. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J Am Chem Soc. 2015;137:2984–2995.10.1021/ja512062 h
  • Ma L, Pegram L, Record MT Jr, et al. Preferential interactions between small solutes and the protein backbone: a computational analysis. Biochemistry. 2010;49:1954–1962.10.1021/bi9020082
  • Andrea S, Barry WN. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev. 2014;43:7358–7377.
  • Hofmeister F. Zur Lehre von der Wirkung der Salze. Zweite Mittheilung [To the theory of the effect of the salts]. Arch Exp Pathol Pharmakol. 1888;24:247–260.10.1007/BF01918191
  • Kunz W, Henle J, Ninham BW. Zur Lehre von der Wirkung der Salze [About the science of the effect of salts]. Curr Opin Colloid Interface Sci. 2004;9:19–37.10.1016/j.cocis.2004.05.005
  • Lyklema J. Lyotropic sequences in colloid stability revisited. Adv Coll Interface Sci. 2003;100–102:1–12.10.1016/S0001-8686(02)00075-1
  • Jungwirth P, Cremer PS. Beyond Hofmeister. Nat Chem. 2014;6:261–263.10.1038/nchem.1899
  • Yang Z. Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol. 2009;144:12–22.10.1016/j.jbiotec.2009.04.011
  • Chaplin, Martin. Hofmeister series. Water structure and science. London: South Bank University; 2014 Aug 6 [cited 2014 Oct 05].
  • Dixit MK, Siddique AA, Tembe BL. Salting-out of methane in the aqueous solutions of urea and glycine−betaine. J Phys Chem B. 2015;119(34):10941–10953.10.1021/acs.jpcb.5b00556
  • Dixit MK, Chatterjee A, Tembe BL. Salting-out of methane in the aqueous solutions of urea and sarcosine. J Chem Sci. 2016;128:599–612.10.1007/s12039-016-1052-x
  • Dixit MK, Timir H, Tembe BL. The effect of urea and taurine osmolytes on hydrophobic association and solvation of methane and neopentane molecules. J Mol Liq. 2016;223:660–671.10.1016/j.molliq.2016.08.079
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.10.1021/ct700301q
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.10.1063/1.470117
  • Berendsen HJC, Postma JPM, vanGunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.10.1063/1.448118
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472.10.1002/(ISSN)1096-987X
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101–014107.10.1063/1.2408420
  • Berendsen HJC, Grigera JR, Straatsma TPJ. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.10.1021/j100308a038
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.10.1021/ja9621760
  • Jorgensen WL, McDonald NA. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. Theo chem. 1998;424:145–155.
  • Jorgensen WL, McDonald NA. Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B. 1998;102:8049–8059.
  • Rizzo RC, Jorgensen WL. OPLS all-atom model for amines: resolution of the amine hydration problem. J Am Chem Soc. 1999;121:4827–4836.10.1021/ja984106u
  • Price ML, Ostrovsky D, Jorgensen WL. Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem. 2001;22:1340–1352.10.1002/(ISSN)1096-987X
  • Watkins EK, Jorgensen WL. Perfluoroalkanes: conformational analysis and liquid-state properties from AB initio and Monte Carlo calculations. J Phys Chem A. 2001;105:4118–4125.10.1021/jp004071w
  • Kaminski GA, Friesner RA, Tirado-Rives J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001;105:6474–6487.10.1021/jp003919d
  • Martinez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164.10.1002/jcc.v30:13
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190.10.1063/1.328693
  • Nose S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50:1055–1076.10.1080/00268978300102851
  • Peter C, Oostenbrink C, van dorp A, et al. Estimating entropies from molecular dynamics simulations. J Chem Phys. 2004;120:2652–2661.10.1063/1.1636153
  • Kirkwood JG. Statistical mechanics of fluid mixtures. J Chem Phys. 1935;3:300–313.10.1063/1.1749657
  • Wei H, Fan Y, Gao YQ. Effects of Urea, tetramethyl urea and trimethylamine N-oxide on aqueous solution structure and solvation of protein backbones: a molecular dynamics simulation study. J Phys Chem B. 2010;114:557–568.10.1021/jp9084926
  • Graziano G. On the solubility of aliphatic hydrocarbons in 7M aqueous urea. J Phys Chem B. 2001;105:2632–2637.
  • Wetlaufer DB, Malik SK, Stoller L, et al. Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies. J Am Chem Soc. 1964;86:508–514.10.1021/ja01057a045
  • Stanley C, Rau DC. Measuring the interaction of urea and protein-stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose. Biochemistry. 2008;47:6711–6718.10.1021/bi800117f
  • Zhang C, Yang M, Zhao K. Insight into the effect mechanism of urea-induced protein denaturation by dielectric spectroscopy. Phys Chem Chem Phys. 2017;19:32007–32015.10.1039/C7CP05994A
  • Stanley C, Rau DC. Measuring the interaction of urea and protein stabilizing osmolytes with th nonpolar surface of hydroxpropyl cellulose. Biochemistry. 2008;47:6711–6718.10.1021/bi800117f
  • Su Z, Dias CL. Molecular interactions accounting for protein denaturation by urea. J Mol Liq. 2017;228:168–175.10.1016/j.molliq.2016.10.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.