744
Views
26
CrossRef citations to date
0
Altmetric
Articles

Machine learning and molecular design of self-assembling -conjugated oligopeptides

& ORCID Icon
Pages 930-945 | Received 22 Feb 2018, Accepted 21 Apr 2018, Published online: 09 May 2018

References

  • Rad-Malekshahi M , Lempsink L , Amidi M , et al . Biomedical applications of self-assembling peptides. Bioconjugate Chem. 2016 Jan;27(1):3–18.
  • French KM , Somasuntharam I , Davis ME . Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Adv Drug Delivery Rev. 2016 Jan;96:40–53.
  • Dehsorkhi A , Castelletto V , Hamley IW . Self-assembling amphiphilic peptides. J Pept Sci. 2014;20(7):453–467.
  • Hendricks MP , Sato K , Palmer LC , et al . Supramolecular assembly of peptide amphiphiles. Acc Chem Res. 2017 Oct;50(10):2440–2448.
  • Smits ECP , Mathijssen SGJ , van Hal PA , et al . Bottom-up organic integrated circuits. Nature. 2008 Oct;455:956.
  • Rubert Pérez CM , Stephanopoulos N , Sur S , et al . The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng. 2015;43(3):501–514.
  • Schenning APHJ , Meijer EW . Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chem Commun. 2005:3245–3258.
  • Zelzer M , Ulijn RV . Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem Soc Rev. 2010;39:3351–3357.
  • Marciel AB , Tanyeri M , Wall BD , et al . Fluidic-directed assembly of aligned oligopeptides with π-conjugated cores. Adv Mater. 2013;25(44):6398–6404.
  • Mansbach RA , Ferguson AL . Control of the hierarchical assembly of [small pi]-conjugated optoelectronic peptides by ph and flow. Org Biomol Chem. 2017;15:5484–5502.
  • Mba M , Moretto A , Armelao L , et al. Synthesis and self-assembly of oligo(p-phenylenevinylene) peptide conjugates in water. Chem – Eur J. 2011;17(7):2044–2047.
  • Hartgerink JD , Beniash E , Stupp SI . Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc Nat Acad Sci USA. 2002;99(8):5133–5138.
  • Gallaher JK , Aitken EJ , Keyzers RA , et al. Controlled aggregation of peptide-substituted perylene-bisimides. Chem Commun. 2012;48:7961–7963.
  • Sun Y , Li W , Wu X . Functional self-assembling peptide nanofiber hydrogels designed for nerve degeneration. ACS Appl Mater Interfaces. 2016 Jan;8(3):2348–2359.
  • Subramani K , Ahmed W . Chapter 13 - self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry. In: Subramani K , Ahmed W , editors. Micro and nano technologies. Boston: William Andrew Publishing; 2012. p. 209–224.
  • Segers VFM , Lee RT . Local delivery of proteins and the use of self-assembling peptides. Drug Discovery Today. 2007 Jul;12(13--14):561–568.
  • Lee EY , Fulan BM , Wong GC , et al . Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Nat Acad Sci USA. 2016;113(48):13588–13593.
  • Klok H-A , Rosler A , Gotz G , et al . Synthesis of a silk-inspired peptide-oligothiophene conjugate. Org Biomol Chem. 2004;2:3541–3544.
  • Diegelmann SR , Gorham JM , Tovar JD . One-dimensional optoelectronic nanostructures derived from the aqueous self-assembly of π-conjugated oligopeptides. J Am Chem Soc. 2008 Oct;130(42):13840–13841.
  • Matmour R , De Cat I , George SJ , et al . Oligo(p-phenylenevinylene)-peptide conjugates: synthesis and self-assembly in solution and at the solid-liquid interface. J Am Chem Soc. Nov 2008;130(44):14576–14583.
  • Stone DA , Hsu L , Stupp SI . Self-assembling quinquethiophene-oligopeptide hydrogelators. Soft Matter. 2009;5:1990–1993.
  • Burroughes JH , Bradley DDC , Brown AR , et al . Light-emitting diodes based on conjugated polymers. Nature. 1990 Oct;347(6293):539–541.
  • Mitschke U , Bauerle P . The electroluminescence of organic materials. J Mater Chem. 2000;10:1471–1507.
  • Roncali J . Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev. Jun 1992;92(4):711–738.
  • Fichou D , editor. Handbook of oligo- and polythiophenes. Weinheim: Wiley-VCH; 1999.
  • Bian L , Zhu E , Tang J , et al. Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Progr Polym Sci. 2012 Sept;37(9):1292–1331.
  • Guo X , Baumgarten M , Müllen K . Designing π-conjugated polymers for organic electronics. Progr Polym Sci. 2013 Dec;38(12):1832–1908.
  • Newman CR , Daniel C , Frisbie DA , et al . Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater. 2004 Nov;16(23):4436–4451.
  • Hoppe H , Sariciftci NS . Polymer solar cells. In: Marder SR , Lee K-S , editors. Photoresponsive polymers II. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2008. p. 1–86.
  • Beaujuge PM , Reynolds JR . Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev. 2010;110(1):268–320.
  • Marty R , Szilluweit R , Sánchez-Ferrer A , et al . Hierarchically structured microfibers of ‘single stack’ perylene bisimide and quaterthiophene nanowires. ACS Nano. Oct 2013;7(10):8498–8508.
  • Wall BD , Zacca AE , Sanders AM , et al . Supramolecular polymorphism: tunable electronic interactions within π-conjugated peptide nanostructures dictated by primary amino acid sequence. Langmuir. 2014 May;30(20):5946–5956.
  • Kim SH , Parquette JR . A model for the controlled assembly of semiconductor peptides. Nanoscale. 2012;4:6940–6947.
  • Hoeben FJM , Jonkheijm P , Meijer EW , et al . About supramolecular assemblies of π-conjugated systems. Chem Rev. 2005;105(4):1491–1546.
  • Ardoña HAM , Besar, K , Togninalli M , et al. Sequence-dependent mechanical, photophysical and electrical properties of pi-conjugated peptide hydrogelators. J Mater Chem C. 2015;3:6505–6514.
  • Kale TS , Marine JE , Tovar JD . Self-assembly and associated photophysics of dendron-appended peptide-π-peptide triblock macromolecules. Macromolecules. 2017 Jul;50(14):5315–5322.
  • Ardoña HAM , Draper ER , Citossi F , et al . Kinetically controlled coassembly of multichromophoric peptide hydrogelators and the impacts on energy transport. J Am Chem Soc. Jun 2017;139(25):8685–8692.
  • Sanders AM , Magnanelli TJ , Bragg AE , et al . Photoinduced electron transfer within supramolecular donor-acceptor peptide nanostructures under aqueous conditions. J Am Chem Soc. 2016 Mar;138(10):3362–3370.
  • Ardoña HAM , Tovar JD . Energy transfer within responsive pi-conjugated coassembled peptide-based nanostructures in aqueous environments. Chem Sci. 2015;6:1474–1484.
  • Karplus M , Kuriyan J . Molecular dynamics and protein function. Proc Nat Acad Sci US. 2005;102(19):6679–6685.
  • Schlick T , Collepardo-Guevara R , Halvorsen LA , et al. Biomolecular modeling and simulation: a field coming of age. Q Rev Biophys. 2011;44(2):191–228, 001.
  • Mortier J , Rakers C , Bermudez M , et al . The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discovery Today. 2015 Jun;20(6):686–702.
  • Tsonchev S , Schatz GC , Ratner MA . Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures. J Phys Chem B. 2004 May;108(26):8817–8822.
  • Gus’kova OA , Khalatur PG , Bäuerle P , et al . Silk-inspired ‘molecular chimeras’: Atomistic simulation of nanoarchitectures based on thiophene-peptide copolymers. Chem Phys Lett. 2008 Aug;461(1–3):64–70.
  • Thurston BA , Tovar JD , Ferguson AL . Thermodynamics, morphology, and kinetics of early-stage self-assembly of pi-conjugated oligopeptides. Mol Simul. 2016;42(12):955–975.
  • Wall BD , Zhou Y , Mei S , et al . Variation of formal hydrogen-bonding networks within electronically delocalized π-conjugated oligopeptide nanostructures. Langmuir. 2014 Sept;30(38):11375–11385.
  • Mondal J , Zhu X , Cui Q , Yethiraj Arun . Self-assembly of π-peptides: insight from the pair and many-body free energy of association. J Phys Chem C. 2010 Jul;114(32):13551–13556.
  • Hansch C , Leo A , Hoekman DH . Exploring QSAR: fundamentals and applications in chemistry and biology. Vol. 1. Washington, DC: American Chemical Society; 1995.
  • Katritzky AR , Lobanov VS , Karelson M . Qspr: the correlation and quantitative prediction of chemical and physical properties from structure. Chem Soc Rev. 1995;24:279–287.
  • Karelson M , Lobanov VS , Katritzky AR . Quantum-chemical descriptors in qsar/qspr studies. Chem Rev. 1996 Jan;96(3):1027–1044.
  • Yousefinejad S , Hemmateenejad B . Chemometrics tools in qsar/qspr studies: a historical perspective. Chemomet Intell Lab Syst. 2015;149(Part B):177–204.
  • Lee EY , Wong GCL , Ferguson AL . Machine learning-enabled discovery and design of membrane-active peptides. Bioorg Med Chem. 2017. DOI:10.1016/j.bmc.2017.07.012
  • Cherkasov A , Muratov EN , Fourches D , et al . Qsar modeling: where have you been? Where are you going to? J Med Chem. 2014 Jun;57(12):4977–5010.
  • Le T , Epa C , Burden FR , et al . Quantitative structure-property relationship modeling of diverse materials properties. Chem Rev. 2012 May;112(5):2889–2919.
  • Jenssen H , Fjell CD , Cherkasov A , et al . Qsar modeling and computer-aided design of antimicrobial peptides. J Pept Sci. 2008;14(1):110–114.
  • Toropova MA , Veselinović AM , Veselinović JB . Qsar modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids. Comput Biol Chem. 2015 Dec;59(Part A):126–130.
  • Xiao X , Wang P , Lin W-Z , et al . iamp-2l: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013 May;436(2):168–177.
  • Luo H , Ye H , Wen Ng H , et al. Snebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides. Sci Rep. 2016 Aug;6:32115.
  • Ji C , Li S , Reilly JP , et al . Predrag Radivojac, and Haixu Tang. Xlsearch: a probabilistic database search algorithm for identifying cross-linked peptides. J Proteome Res. 2016 Jun;15(6):1830–1841.
  • Wu W , Zhang C , Lin W , et al . Quantitative structure-property relationship (qspr) modeling of drug-loaded polymeric micelles via genetic function approximation. PLOS ONE. 2015 Mar;10(3):e0119575.
  • Chen C , Liu Y , Zhang J , et al. A quantitative sequence-aggregation relationship predictor applied as identification of self-assembled hexapeptides. Chemomet Intell Lab Syst. 2015 Jul;145:7–16.
  • Vadehra GS , Wall BD , Diegelmann SR , et al. On-resin dimerization incorporates a diverse array of [small pi]-conjugated functionality within aqueous self-assembling peptide backbones. Chem Commun. 2010;46:3947–3949.
  • Mansbach RA , Ferguson AL . Coarse-grained molecular simulation of the hierarchical self-assembly of π-conjugated optoelectronic peptides. J Phys Chem B. 2017 Feb;121(7):1684–1706.
  • Wall BD , Tovar JD . Synthesis and characterization of π-conjugated peptide-based supramolecular materials. Pure Appl Chem. 2012;84:1039–1045.
  • Ardoña HAM , Tovar JD . Peptide π-electron conjugates: organic electronics for biology? Bioconjugate Chem. 2015 Dec;26(12):2290–2302.
  • Sanders AM , Tovar JD . Solid-phase pd-catalysed cross-coupling methods for the construction of π-conjugated peptide nanomaterials. Supramol Chem. 2014 Mar;26(3--4):259–266.
  • Wall BD , Diegelmann SR , Zhang S , et al . Aligned macroscopic domains of optoelectronic nanostructures prepared via shear-flow assembly of peptide hydrogels. Adv Mater. 2011;23(43):5009–5014.
  • Li B , Li S , Zhou Y , et al . Nonequilibrium self-assembly of π-conjugated oligopeptides in solution. ACS Appl Mater Interfaces. 2017 Feb;9(4):3977–3984.
  • Whitesides GM , Grzybowski B . Self-assembly at all scales. Science. 2002;295(5564):2418–2421.
  • Tantakitti F , Boekhoven J , Wang X , et al. Energy landscapes and functions of supramolecular systems. Nat Mater. 2016 Jan;15:469–476.
  • Berendsen HJC , van der Spoel D , van Drunen R . Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1--3):43–56.
  • Van Der Spoel D , Lindahl E , Hess B , et al . Gromacs: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718.
  • Schüttelkopf AW , van Aalten DMF . PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D: Biol Crystallogr. 2004 Aug;60(8):1355–1363.
  • Wang L , Hingerty BE , Srinivasan AR , et al . Accurate representation of b-dna double helical structure with implicit solvent and counterions. Biophys J. 2002 Jul;83(1):382–406.
  • Hornak V , Abel R , Okur A , et al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinf. 2006;65(3):712–725.
  • Wang J , Wang W , Kollman PA , et al . Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model. 2006;25(2):247–260.
  • Wang J , Wolf RM , Caldwell JW , et al . Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174.
  • Wang J , Cieplak P , Kollman PA . How well does a restrained electrostatic potential (resp) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem. 2000;21(12):1049–1074.
  • Bayly CI , Cieplak P , Cornell W , et al . Kollman. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. J Phys Chem. 1993 Oct;97(40):10269–10280.
  • Vanquelef E , Simon S , Marquant G , et al. R.E.D. server: a web service for deriving resp and esp charges and building force field libraries for new molecules and molecular fragment. Nucl Acids Res. 2011 Apr;39(Web Server issue):W511–W517.
  • Reynolds CA , Essex JW , Richards WG . Atomic charges for variable molecular conformations. J Am Chem Soc. 1992 Nov;114(23):9075–9079.
  • Frisch MJ , Trucks GW , Bernhard Schlegel H , et al. Gaussian 09; 2009.
  • Jorgensen WL , Chandrasekhar J , Madura JD , et al . Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935.
  • Bussi G , Donadio D , Parrinello M . Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101.
  • Parrinello M , Rahman A . Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190.
  • Nosé S , Klein ML . Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983 Dec;50(5):1055–1076.
  • Nosé S . A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984 Jun;52(2):255–268.
  • Hoover WG . Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985 Mar;31:1695–1697.
  • Hockney RW , Goel SP , Eastwood JW . Quiet high-resolution computer models of a plasma. J Comput Phys. 1974;14(2):148–158.
  • Essmann U , Perera L , Berkowitz ML , et al . A smooth particle mesh ewald method. J Chem Phys. 1995;103(19):8577–8593.
  • Hess B , Bekker H , Berendsen HJC , et al . Fraaije. Lincs: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472.
  • Allen MP , Tildesley DJ . Computer simulations of liquids. Oxford: Oxford University Press; 1989.
  • Clark Still W , Tempczyk A , Hawley RC , et al. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc. 1990 Aug;112(16):6127–6129.
  • Schaefer M , Bartels C , Karplus M . Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model. J Mol Biol. 1998 Dec;284(3):835–848.
  • Hess B , van der Spoel D , Lindahl E . GROMACS user manual. 4.6.3 ed. Uppsala: Royal Institute of Technology and Uppsala Univerity; 2013.
  • Onufriev A , Bashford D , Case DA . Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Struct Funct Bioinf. 2004;55(2):383–394.
  • Endres RG . Accelerating all-atom protein folding simulations through reduced dihedral barriers. Mol Simul. 2005 Sept;31(11):773–777.
  • Pak Y , Kim E , Jang S . Misfolded free energy surface of a peptide with αββ motif (1psv) using the generalized born solvation model. J Chem Phys. 2004;121(18):9184–9185.
  • Roe DR , Okur A , Wickstrom L , et al . Secondary structure bias in generalized born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation. J Phys Chem B. Feb 2007;111(7):1846–1857.
  • Torrie GM , Valleau JP . Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977 Feb;23(2):187–199.
  • Kumar S , Rosenberg JM , Bouzida D , et al . The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13(8):1011–1021.
  • Hub JS , de Groot BL , van der Spoel D . g\_wham-a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput. 2010 Nov;6(12):3713–3720.
  • Neumann RM . Entropic approach to brownian movement. Amer J Phys. 1980 May;48(5):354–357.
  • Jeon J , Scott M . Shell. Charge effects on the fibril-forming peptide ktviie: a two-dimensional replica exchange simulation study. Biophys J. 2012 Mar;102(8):1952–1960.
  • Wang J , Ferguson AL . Mesoscale simulation of asphaltene aggregation. J Phys Chem B. 2016 Aug;120(32):8016–8035.
  • Harary F . Graph theory. Reading (MA): Addison-Wesley; 1969.
  • Besar K , Ardoña HAM , Tovar JD , et al . Demonstration of hole transport and voltage equilibration in self-assembled π-conjugated peptide nanostructures using field-effect transistor architectures. ACS Nano. 2015 Dec;9(12):12401–12409.
  • Todeschini R , Consonni V . Molecular descriptors for chemoinformatics. Weinheim: Wiley VCH; 2010.
  • Yap CW . Padel-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 2011;32(7):1466–1474.
  • O’Boyle NM , Banck M , James CA , et al. Open babel: an open chemical toolbox. J Cheminf. 2011;3(33):1–14.
  • Gasteiger J , Marsili M . Iterative partial equalization of orbital electronegativity -- a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228.
  • Guyon I , Elisseeff A . An introduction to variable and feature selection. J Mach Learn Res. 2003 Mar;3:1157–1182.
  • Kittler J . Feature selection and extraction. In: Young A , editor. Handbook of pattern recognition and image processing. 1st ed. 1986. p. 59–83.
  • Rogers D , Hopfinger AJ . Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci. 1994 Jul;34(4):854–866.
  • Hoerl AE , Kennard RW . Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970 Feb;12(1):55–67.
  • Tibshirani R . Regression shrinkage and selection via the lasso. J R Stat Soc B. 1996;58:267–288.
  • Zou H , Hastie T . Regularization and variable selection via the elastic net. J Roy Stat Soc: Ser B (Stat Methodol). 2005;67(2):301–320.
  • Friedman J , Hastie T , Tibshirani R . The elements of statistical learning. New York (NY): Springer; 2001.
  • Bhasin M , Raghava GPS . Prediction of ctl epitopes using qm, svm and ann techniques. Vaccine. 2004;22(23):3195–3204.
  • Doytchinova IA , Flower DR . Predicting class I major histocompatibility complex (mhc) binders using multivariate statistics: comparison of discriminant analysis and multiple linear regression. J Chem Inf Model. 2007 Jan;47(1):234–238.
  • Söllner J . Selection and combination of machine learning classifiers for prediction of linear b-cell epitopes on proteins. J Mol Recogn. 2006;19(3):209–214.
  • Moran PAP . Notes on continuous stochastic phenomena. Biometrika. 1950;37(1/2):17–23.
  • Moreau G , Broto P . Autocorrelation of a topological structure: a new molecular descriptor. Nouv J Chim. 1980;4:359–360.
  • Sanderson RT . Principles of electronegativity part II. Applications. J Chem Educ. 1988 Mar;65(3):227–231.
  • Burden Frank R . Molecular identification number for substructure searches. J Chem Inf Comput Sci. 1989 Aug;29(3):225–227.
  • Kier Lemont B , Hall Lowell H . An electrotopological-state index for atoms in molecules. Pharm Res. 1990;7(8):801–807.
  • Hall LH , Kier LB . The molecular connectivity Chi indexes and Kappa shape indexes in structure-property modeling. In: Lipkowitz KB , Boyd DB , editors. Reviews in computational chemistry. Vol. 2. Weinheim: Wiley-VCH; 2007. p. 367–422.
  • Geary RC . The contiguity ratio and statistical mapping. Incorp Statis. 1954;5(3):115–146.
  • Veltri D , Kamath U , Shehu A . Deep learning improves antimicrobial peptide recognition. Bioinformatics. 2018. DOI:10.1093/bioinformatics/bty179
  • Zhang L , Han J , Wang H , et al . Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018;120(14):143001.
  • Zhang L , Han J , Wang H , et al. Deepcg: constructing coarse-grained models via deep neural networks. 2018, preprint arXiv:1802.08549.
  • Pande VS , Beauchamp K , Bowman GR . Everything you wanted to know about markov state models but were afraid to ask. Methods. 2010 Sept;52(1):99–105.
  • Zhang LY , Gallicchio E , Friesner RA , et al . Solvent models for protein-ligand binding: comparison of implicit solvent poisson and surface generalized born models with explicit solvent simulations. J Comput Chem. 2001;22(6):591–607.
  • Brice AR , Dominy BN . Examining electrostatic influences on base-flipping: a comparison of tip3p and gb solvent models. Commun Comput Phys. 2013;13(1):223–237.
  • Sanghi T , Aluru NR . Coarse-grained potential models for structural prediction of carbon dioxide (CO2) in confined environments. J Chem Phys. 2012;136(2):024102.
  • Villa A , Peter C , van der Vegt NFA . Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation. Phys Chem Chem Phys. 2009;11:2077–2086.
  • Roy K , Kar S , Das RN . A Primer on QSAR/QSPR Modeling: Fundamental Concepts. Cham: Springer; 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.