528
Views
15
CrossRef citations to date
0
Altmetric
Articles

Study on mechanical properties of polyethylene with chain branching in atomic scale by molecular dynamics simulation

ORCID Icon, &
Pages 1016-1024 | Received 14 Sep 2017, Accepted 28 Apr 2018, Published online: 10 May 2018

References

  • Omar MF, Akil HM, Ahmad ZA. Effect of molecular structures on dynamic compression properties of polyethylene. Mater Sci Eng A. 2012;538:125–134.10.1016/j.msea.2011.12.111
  • Vicente-Alique E, Vega JF, Robledo N, et al. Study of the effect of the molecular architecture of the components on the melt rheological properties of polyethylene blends. J Polym Res. 2015;22:1–11.
  • Ramachandran R, Beaucage G, Kulkarni AS, et al. Persistence length of short-chain branched polyethylene. Macromolecules. 2008;41:9802–9806.10.1021/ma801775n
  • Jordan JL, Casem DT, Bradley JM, et al. Mechanical properties of low density polyethylene. J Dyn Behavior Mater. 2016;2:411–420.10.1007/s40870-016-0053-7
  • Zhang R, Guo H, Lei J, et al. Effect of molecular structure on the performance of polyacrylic acid superplasticizer. J Wuhan Univer Technol Mater Sci Ed. 2007;22:245–249.
  • Kalyon DM, Yu DW, Moy FH. Rheology and processing of linear low density polyethylene resins as affected by alpha-olefin comonomers. Polym Eng Sci. 1988;28:1542–1550.10.1002/(ISSN)1548-2634
  • Yan D, Wang WJ, Zhu S. Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer. 1999;40:1737–1744.10.1016/S0032-3861(98)00318-8
  • Hossain D, Tschopp MA, Ward DK, et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer. 2010;51:6071–6083.10.1016/j.polymer.2010.10.009
  • Dartora PC, Santana RMC, Moreira ACF, et al. The influence of long chain branches of LLDPE on processability and physical properties. Polímeros. 2015;25:531–539.
  • Kline DE, Sauer JA, Woodward AE. Effect of branching on dynamic mechanical properties of polyethylene. J Polym Sci. 1956;XXII:455–462.10.1002/pol.1956.1202210211
  • Liu TM, Baker WE. The effect of the length of the short chain branch on the impact properties of linear low density polyethylene. Polym Eng Sci. 1992;32:944–955.10.1002/(ISSN)1548-2634
  • Mortimer GA. The effect of short-chain branch structure on the properties of low-density polyethylene. J Appl Polym Sci. 1971;15:1231–1235.10.1002/app.1971.070150517
  • Moyassari A, Mostafavi H, Gkourmpis T, et al. Simulation of semi-crystalline polyethylene: effect of short-chain branching on tie chains and trapped entanglements. Polymer. 2015;72:177–184.10.1016/j.polymer.2015.07.008
  • Okabe M, Isayama M, Matsuda H. Sol-gel transitions of linear low density polyethylenes in organic solvents. Polym J. 1985;17:369–376.10.1295/polymj.17.369
  • Raumann G, Saunders DW. The anisotropy of Young’s modulus in drawn polyethylene. Proc Phys Soc. 1961;77:1028–1037.10.1088/0370-1328/77/5/312
  • Chiou S-T, Cheng W-C, Lee W-S. Strain rate effects on the mechanical properties of a Fe–Mn–Al alloy under dynamic impact deformations. Mater Sci Eng A. 2005;392:156–162.10.1016/j.msea.2004.09.055
  • Fu S, Wang Y, Wang Y. Tension testing of polycarbonate at high strain rates. Polym Testing. 2009;28:724–729.10.1016/j.polymertesting.2009.06.002
  • Omar MF, Akil HM, Ahmad ZA. Static and dynamic compressive properties of mica/polypropylene composites. Mater Sci Eng A. 2011;528:1567–1576.10.1016/j.msea.2010.10.071
  • Kulmi U, Basu S. A molecular dynamics study of the failure modes of a glassy polymer confined between rigid walls. Modell Simul Mater Sci Eng. 2006;14:1071–1093.10.1088/0965-0393/14/6/013
  • Clarke JHR, Brown D. Molecular dynamics modelling of polymer materials. Mol Simul. 1989;3:27–47.10.1080/08927028908034618
  • Weiner SJ, Kollman PA, Case DA, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 1983;106:765–784.
  • Weiner SJ, Kollman PA, Nguyen DT, et al. An all atom force field for simulations of proteins and nucleic acids. J Comput Chem. 1986;7:230–252.10.1002/jcc.540070216
  • Jorgensen WL, Tiradorives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110:1657–1666.10.1021/ja00214a001
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.10.1021/ja9621760
  • Sun H. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem. 1994;15:752–768.10.1002/(ISSN)1096-987X
  • Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–7364.10.1021/jp980939v
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38.10.1016/0263-7855(96)00018-5
  • Jewett A. Moltemplate Manual. Jensen Lab (Caltech), Shea Lab (UCSB): Jensen Lab (Caltech), Shea Lab (UCSB). 2016 Dec 8.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.10.1006/jcph.1995.1039
  • Nikkhah SJ, Moghbeli MR, Hashemianzadeh SM. Dynamic study of deformation and adhesion of an amorphous polyethylene/graphene interface: a simulation study. Macromol Theory Simul. 2016;25:533–549.10.1002/mats.201600069
  • Yang SR, Gao F, Qu JM. A study of highly crosslinked epoxy molding compound and its interface with copper substrate by molecular dynamic simulations. In: 2010 Electronic Components and Technology Conference; 2010. p. 128–134; Las vegas, NV, USA.
  • Mahajan DK, Basu S. On the simulation of uniaxial, compressive behavior of amorphous, glassy polymers with molecular dynamics. Int J Appl Mech. 2010;02:515–541.10.1142/S1758825110000639
  • Yu KQ, Li ZS, Sun JZ. Polymer structures and glass transition: a molecular dynamics simulation study. Macromol Theory Simul. 2001;10:624–633.10.1002/(ISSN)1521-3919
  • Teraoka I. Polymer solutions: an introduction to physical properties. New York, NY: John Wiley & Sons, Inc; 2002.
  • Theodorou DN, Suter UW. Detailed molecular structure of a vinyl polymer glass. Macromolecules. 1985;18:1467–1478.10.1021/ma00149a018
  • Kremer K, Grest GS. Dynamics of entangled linear polymer melts:  A molecular-dynamics simulation. J Chem Phys. 1990;92:5057–5086.10.1063/1.458541
  • Adnan A, Sun CT. Effect of adhesive thickness on joint strength: a molecular dynamics perspective. J Adhes. 2008;84:401–420.10.1080/00218460802089239
  • Tschopp MA, Bouvard JL, Ward DK, et al. Atomic scale deformation mechanisms of amorphous polyethylene under tensile loading. The Minerals, Metals & Materials Society (TMS) 2011 Conference Proceedings, Supplemental Proceedings: Materials Fabrication, Properties, Characterization, and Modeling; 2011. p. 789–794; San Diego, CA, USA.
  • Vu-Bac N, Lahmer T, Keitel H, et al. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mech Mater. 2014;68:70–84.10.1016/j.mechmat.2013.07.021
  • Zhang XM, Elkoun S, Ajji A, et al. Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE. Polymer. 2004;45:217–229.10.1016/j.polymer.2003.10.057
  • Yeh JT, Chen BJ, Lee HM. Impact properties of carbon fiber reinforced linear and short-chain branched polyethylenes. Polym Bull. 1994;33:607–614.10.1007/BF00296171
  • Gupta P, Wilkes GL, Sukhadia AM, et al. Does the length of the short chain branch affect the mechanical properties of linear low density polyethylenes? An investigation based on films of copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst. Polymer. 2005;46:8819–8837.10.1016/j.polymer.2005.05.137
  • Yashiro K, Ito T, Tomita Y. Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension. Int J Mech Sci. 2003;45:1863–1876.10.1016/j.ijmecsci.2003.11.001
  • Kirichenko AF, Sahu A, Filippov TV, et al. Effects of temperature and strain rate on the deformation of amorphous polyethylene: a comparison between molecular dynamics simulations and experimental results. Modell Simul Mater Sci Eng. 2013;21:065016.
  • Shergold OA, Fleck NA, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng. 2006;32:1384–1402.10.1016/j.ijimpeng.2004.11.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.