325
Views
1
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation of the spreading of the nanosized droplet on a graphene-coated substrate: the effect of the contact line forces

, ORCID Icon, , &
Pages 1229-1236 | Received 24 Jan 2018, Accepted 18 May 2018, Published online: 21 Jun 2018

References

  • Gen H, Li J, Liu X. Progress in research on surface engineering of graphene. Chin Surf Eng. 2015;28:4–14.
  • Amani A, Karimian SMH, Seyednia M. A molecular dynamics simulation on the effect of different parameters on thermal resistance of graphene-argon interface. Mol Simul. 2017;43:276–283. doi: 10.1080/08927022.2016.1265959
  • Mondal J, Kozlova M, Sammelselg V. Graphene nanoplatelets based protective and functionalizing coating for stainless steel. J Nanosci Nanotechnol. 2015;15:6747–6750. doi: 10.1166/jnn.2015.10774
  • Bai Q, Guo Y, Chen J, et al. Research and development of ultra-clean manufacturing. Chin J Mech Eng. 2016;52:145–153. doi: 10.3901/JME.2016.19.145
  • Liu Y, Ren LQ. Wettability of a biomimetic non-smooth coating by water. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2009;S1:79–82.
  • Ashraf A, Wu Y, Wang MC, et al. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material. Langmuir. 2014;30:12827–12836. doi: 10.1021/la503089k
  • Rafiee J, Mi X, Gullapalli H, et al. Wetting transparency of graphene. Nat Mater. 2012;11:217–222. doi: 10.1038/nmat3228
  • Shih CJ, Wang QH, Lin S, et al. Breakdown in the wetting transparency of graphene. Phys Rev Lett. 2012;109:176101. doi: 10.1103/PhysRevLett.109.176101
  • Raj R, Maroo SC, Wang EN. Wettability of graphene. Nano Lett. 2013;13:1509–1515. doi: 10.1021/nl304647t
  • Parobek D, Liu H. Wettability of graphene. 2d Mater. 2015;2:032001. doi: 10.1088/2053-1583/2/3/032001
  • Driskill J, Vanzo D, Bratko D, et al. Wetting transparency of graphene in water. J Chem Phys. 2014;141:18C517. doi: 10.1063/1.4895541
  • Wang X, Lee D, Peng X, et al. Spreading dynamics and dynamic contact angle of non-newtonian fluids. Langmuir. 2007;23(15):8042–8047. doi: 10.1021/la0701125
  • Liang Z, Wang X, Lee D, et al. Spreading dynamics of power-law fluid droplets. J Phys Condens Matter. 2009;21(46):464117. doi: 10.1088/0953-8984/21/46/464117
  • Wang X, Zhang Y, Lee D, et al. Spreading of completely wetting or partially wetting power-law fluid on solid surface. Langmuir. 2007;23(18):9258–9262. doi: 10.1021/la700232y
  • Liang Z, Wang X, Duan Y, et al. Energy-based model for capillary spreading of power-law liquids on a horizontal plane. Colloids Surf A. 2012;403:155–163. doi: 10.1016/j.colsurfa.2012.04.009
  • Grewal HS, Kim HN, Cho IJ, et al. Role of viscous dissipative processes on the wetting of textured surfaces. Sci Rep. 2015;5:14159. doi: 10.1038/srep14159
  • Voinov OV. Hydrodynamics of wetting. Fluid Dyn. 1977;11:714–721. doi: 10.1007/BF01012963
  • Brochard-Wyart F, Gennes PGD. Dynamics of partial wetting. Adv Colloid Interface Sci. 1992;39:1–11. doi: 10.1016/0001-8686(92)80052-Y
  • Min Q, Duan Y, Wang X, et al. Does macroscopic flow geometry influence wetting dynamic? J Colloid Interface Sci. 2011;362:221–227. doi: 10.1016/j.jcis.2011.06.029
  • Lu G, Wang X, Duan Y. A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids. Adv Colloid Interface Sci. 2016;236:43–62. doi: 10.1016/j.cis.2016.07.004
  • Carlson A, Bellani G, Amberg G. Universality in dynamic wetting dominated by contact-line friction. Phys Rev E. 2012;85:045302. doi: 10.1103/PhysRevE.85.045302
  • Bertrand E, Blake TD, Coninck JD. Influence of solid–liquid interactions on dynamic wetting: a molecular dynamics study. J Phys Condens Matter. 2009;21:464124. doi: 10.1088/0953-8984/21/46/464124
  • Li H, Sedev R, Ralston J. Dynamic wetting of a fluoropolymer surface by ionic liquids. J Phys Chem Chem Phys. 2011;13:3952–3959. doi: 10.1039/c0cp02035d
  • Liang Z, Wang X, Duan Y, et al. Dynamic wetting of non-newtonian fluids: multicomponent molecular-kinetic approach. Langmuir. 2010;26(18):14594–14599. doi: 10.1021/la102041q
  • Hong MY, Kondaraju S, Lee JS, et al. Molecular dynamics study of the nanosized droplet spreading: the effect of the contact line forces on the kinetic energy dissipation. Appl Surf Sci. 2017;409:179–186. doi: 10.1016/j.apsusc.2017.03.043
  • Werder T, Walther JH, Jaffe RL, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B. 2003;107:1345–1352. doi: 10.1021/jp0268112
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112:6472–6486.
  • Wang S, Zhang Y, Abidi N, et al. Wettability and surface free energy of graphene films. Langmuir. 2009;25:11078–11081. doi: 10.1021/la901402f
  • Shin YJ, Wang Y, Huang H, et al. Surface-energy engineering of graphene. Langmuir. 2010;26:3798–3802. doi: 10.1021/la100231u
  • Dewapriya MAN, Rajapakse RKND. Development of a homogenous nonlinear spring model characterizing the interfacial adhesion properties of graphene with surface defects. Compos B Eng. 2016;98:339–349. doi: 10.1016/j.compositesb.2016.04.052
  • Dai Z, Lu L, Sun Y, et al. Wetting control through topography and surface hydrophilic/hydrophobic property changes by coarse grained simulation. Mol Simul. 2017;43:1202–1208. doi: 10.1080/08927022.2017.1342123
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Winkels KG, Weijs JH, Eddi A, et al. Initial spreading of low-viscosity drops on partially wetting surfaces. Phys Rev E: Stat Nonlin Soft Matter Phys. 2012;85:055301. doi: 10.1103/PhysRevE.85.055301
  • Alejandre J, Tildesley DJ, Chapela GA. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J Chem Phys. 1995;102:4574–4583. doi: 10.1063/1.469505
  • Zhang J, Borg MK, Sefiane K, et al. Wetting and evaporation of salt-water nanodroplets: a molecular dynamics investigation. Phys Rev E: Stat Nonlin Soft Matter Phys. 2015;92:052403. doi: 10.1103/PhysRevE.92.052403
  • Nguyen CT, Kim BH. Stress and surface tension analyses of water on graphene-coated copper surfaces. Int J Precis Eng Manuf. 2016;17:503–510. doi: 10.1007/s12541-016-0063-3
  • Boruvka L, Neumann AW. Generalization of the classical theory of capillarity. J Chem Phys. 1977;66(12):5464–5476. doi: 10.1063/1.433866
  • Lu G, Duan Y, Wang X. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. J Nanopart Res. 2014;16(9):2564. doi: 10.1007/s11051-014-2564-2
  • De GR, Benet J, Katcho NA, et al. Semi-infinite boundary conditions for the simulation of interfaces: the Ar/CO2(s) model revisited. J Chem Phys. 2012;136(10):2488–2489.
  • Tretyakov N, Muller M, Todorova D, et al. Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case. J Chem Phys. 2013;138(6):064905. doi: 10.1063/1.4790581

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.