767
Views
11
CrossRef citations to date
0
Altmetric
Articles

Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: an MC/MD simulation study

, &
Pages 1244-1251 | Received 25 Aug 2017, Accepted 23 May 2018, Published online: 11 Jun 2018

References

  • Bastin L, Bárcia PS, Hurtado EJ, et al. A microporous metal–organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J Phys Chem C. 2008;112(5):1575–1581. doi: 10.1021/jp077618g
  • Hamon L, Llewellyn PL, Devic T, et al. Co-adsorption and separation of CO2–CH4 mixtures in the highly flexible MIL-53 (Cr) MOF. J Am Chem Soc. 2009;131(47):17490–17499. doi: 10.1021/ja907556q
  • Shan M, Seoane B, Rozhko E, et al. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chem Eur J. 2016;22(41):14467–14470. doi: 10.1002/chem.201602999
  • Venna SR, Carreon MA. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc. 2010;132(1):76–78. doi: 10.1021/ja909263x
  • Babarao R, Hu Z, Jiang J. Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir. 2007;23:659–666. doi: 10.1021/la062289p
  • Krishna R, van Baten JM. Using molecular simulations for screening of zeolites for separation of CO2/CH4 mixtures. Chem Eng J. 2007;133(1–3):121–131. doi: 10.1016/j.cej.2007.02.011
  • Liu Y, Liu H, Hu Y, et al. Density functional theory for adsorption of gas mixtures in metal–organic frameworks. J Phys Chem B. 2010;114(8):2820–2827. doi: 10.1021/jp9104932
  • Bae Y-S, Mulfort KL, Frost H, et al. Separation of CO2 from CH4 using mixed-ligand metal–organic frameworks. Langmuir. 2008;24(16):8592–8598. doi: 10.1021/la800555x
  • Cote AP, Benin AI, Ockwig NW, et al. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166–1170. doi: 10.1126/science.1120411
  • Waller PJ, Gandara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc Chem Res. 2015;48(12):3053–3063. doi: 10.1021/acs.accounts.5b00369
  • Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev. 2012;41(18):6010–6022. doi: 10.1039/c2cs35157a
  • Ding SY, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev. 2013;42(2):548–568. doi: 10.1039/C2CS35072F
  • Díaz U, Corma A. Ordered covalent organic frameworks, COFs and PAFs from preparation to application. Coord Chem Rev. 2016;311:85–124. doi: 10.1016/j.ccr.2015.12.010
  • Furukawa H, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc. 2009;131(25):8875–8883. doi: 10.1021/ja9015765
  • Mendozacortés JL, Sang SH, Furukawa H, et al. Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. J Phys Chem A. 2010;114(40):10824–10833. doi: 10.1021/jp1044139
  • Babarao R, Jiang J. Exceptionally high CO2 storage in covalent-organic frameworks: atomistic simulation study. Energy Environ Sci. 2008;1(1):139. doi: 10.1039/b805473h
  • Lan J, Cao D, Wang W, et al. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano. 2010;4(7):4225–4237. doi: 10.1021/nn100962r
  • Choi YJ, Choi JH, Choi KM, et al. Covalent organic frameworks for extremely high reversible CO2 uptake capacity: a theoretical approach. J Mater Chem. 2011;21(4):1073–1078. doi: 10.1039/C0JM02891F
  • Fang Q, Zhuang Z, Gu S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat Commun. 2014;5:1166.
  • Zhu X, An S, Liu Y, et al. Efficient removal of organic dye pollutants using covalent organic frameworks. AIChE J. 2017. DOI:10.1002/aic.15699.
  • Liu Y, Liu D, Yang Q, et al. Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures. Ind Eng Chem Res. 2010;49(6):2902–2906. doi: 10.1021/ie901488f
  • Keskin S. Adsorption, diffusion, and separation of CH4/H2 mixtures in covalent organic frameworks: molecular simulations and theoretical predictions. J Phys Chem C. 2012;116(2):1772–1779. doi: 10.1021/jp209804x
  • Vicent-Luna JM, Luna-Triguero A, Calero S. Storage and separation of carbon dioxide and methane in hydrated covalent organic frameworks. J Phys Chem C. 2016;120(41):23756–23762. doi: 10.1021/acs.jpcc.6b05233
  • Sanborn MJ, Snurr RQ. Diffusion of binary mixtures of CF 4 and n-alkanes in faujasite. Sep Purif Technol. 2000;20(1):1–13. doi: 10.1016/S1383-5866(00)00067-8
  • Salles F, Jobic H, Devic T, et al. Self and transport diffusivity of CO2 in the metal–organic framework MIL-47 (v) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations. ACS Nano. 2010;4(1):143–152. doi: 10.1021/nn901132k
  • Ackerman DM, Skoulidas AI, Sholl DS, et al. Diffusivities of Ar and Ne in carbon nanotubes. Mol Simul. 2003;29(10–11):677–684. doi: 10.1080/0892702031000103239
  • Skoulidas AI, Sholl DS. Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations. J Phys Chem B. 2005;109(33):15760–15768. doi: 10.1021/jp051771y
  • Skoulidas AI, Sholl DS. Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J Phys Chem A. 2003;107(47):10132–10141. doi: 10.1021/jp0354301
  • Keskin S, Liu J, Johnson JK, et al. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal–organic frameworks: diffusion of H2/CH4 mixtures in CuBTC. Langmuir. 2008;24(15):8254–8261. doi: 10.1021/la800486f
  • Liu Y, Guo F, Hu J, et al. Entropy prediction for H2 adsorption in metal–organic frameworks. Phys Chem Chem Phys. 2016;18(34):23998. doi: 10.1039/C6CP04645B
  • Himeno S, Tomita T, Suzuki K, et al. Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Micropor Mesopor Mater. 2007;98(1–3):62–69. doi: 10.1016/j.micromeso.2006.05.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.