603
Views
10
CrossRef citations to date
0
Altmetric
Articles

Soret coefficients and thermal conductivities of alkali halide aqueous solutions via non-equilibrium molecular dynamics simulations

&
Pages 351-357 | Received 29 Mar 2018, Accepted 23 May 2018, Published online: 13 Jun 2018

References

  • Ludwig C. Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen, Sitz Ber Akad Wiss Wien Math-Naturw KI. 1856.
  • Soret C. Sur l' état d' équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogéne dont deux parties sont portèes á des tempèratures diffèrentes. Archives des sciences physiques et naturelles, Bibliothèque Universelle. 1879;2:48.
  • Snyder GJ, Toberer E. Complex thermoelectric materials. Nat Mater. 2008;7:105–114. doi: 10.1038/nmat2090
  • Weinert F, Mast C, Braun D. Optical fluid and biomolecule transport with thermal fields. Phys Chem Chem Phys. 2011;13:9918–9928. doi: 10.1039/c0cp02359k
  • Hannaoui R., Galliéro G, Hoang H, et al. Influence of confinement on thermodiffusion. J Chem Phys. 2013;139:114704. doi: 10.1063/1.4821128
  • Han M. Thermally-driven nanoscale pump by molecular dynamics simulation. J Mech Sci Technol. 2008;22:157–165. doi: 10.1007/s12206-007-1019-4
  • He Y, Tsutsui M, Scheicher R, et al. Thermophoretic manipulation of DNA translocation through nanopores. ACS Nano. 2013;7:538–546. doi: 10.1021/nn304914j
  • Wienken C, Baaske P, Duhr S, et al. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA. Nucleic Acids Res. 2011;39:e52–e52. doi: 10.1093/nar/gkr035
  • Belkin M, Chao S H, Aksimentiev G. Modeling thermophoretic effects in solid-state nanopores. J Comput Electron. 2014;13:826.838 doi: 10.1007/s10825-014-0594-8
  • Putnam S, Cahill D. Transport of nanoscale latex spheres in a temperature gradient. Langmuir. 2005;21:5317–5323. doi: 10.1021/la047056h
  • Jerabek-Willemsen M, Wienken C, Braun D, et al. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol. 2011;9:342–353. doi: 10.1089/adt.2011.0380
  • Reiner J, Robertson J, Burden D, et al. Temperature sculpting in yoctoliter volumes. J Am Chem Soc. 2013;135:3087–3094. doi: 10.1021/ja309892e
  • Squires T, Quake S. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005;77:977.1026 doi: 10.1103/RevModPhys.77.977
  • Jiang H-R, Wada H, Yoshinaga N, et al. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys Rev Lett. 2009;102:208301–208304.
  • Braun D, Libchaber A. Trapping of DNA by thermophoretic depletion and convection. Phys Rev Lett. 2002;89:188103–188106.
  • Barreiro A, Rurali R, Hernández E, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science. 2008;320:775–778. doi: 10.1126/science.1155559
  • Yang M, Ripoll M. A self-propelled thermophoretic microgear. Soft Matter. 2014;10:1006–1011. doi: 10.1039/c3sm52417e
  • Ross D, Locascio L. Microfluidic temperature gradient focusing. Anal Chem. 2002;74:2556–2564. doi: 10.1021/ac025528w
  • Ozbek H, Phillips SL. Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C. J Chem Eng Data. 1980;25:263–267. doi: 10.1021/je60086a001
  • Ramires M, Nieto de Castro C. Thermal conductivity of aqueous potassium chloride solutions. Int J Thermophys. 2000;21:671–679. doi: 10.1023/A:1006628419636
  • Gaeta F, Perna G, Scala G, et al. Nonisothermal matter transport in sodium chloride and potassium chloride aqueous solutions. 1. Homogeneous system (thermal diffusion). J Phys Chem. 1982;86:2967–2974. doi: 10.1021/j100212a032
  • Colombani J, Bert J, Dupuy-Philon J. Thermal diffusion in (LiCl, RH2O). J Chem Phys. 1999;110:8622–8627. doi: 10.1063/1.478769
  • Römer F, Wang Z, Wiegand S, et al. Alkali halide solutions under thermal gradients: Soret coefficients and heat transfer mechanisms. J Phys Chem B. 2013;117:8209–8222. doi: 10.1021/jp403862x
  • Wittko G, Köhler W. On the temperature dependence of thermal diffusion of liquid mixtures. Europhys Lett. 2007;78:46007. doi: 10.1209/0295-5075/78/46007
  • Iacopini S, Rusconi R, Piazza R. The macromolecular ‘tourist’: universal temperature dependence of thermal diffusion in aqueous colloidal suspensions. Eur Phys J E Soft Matter. 2006;19:59–67. doi: 10.1140/epje/e2006-00012-9
  • Wiegand S. Thermal diffusion in liquid mixtures and polymer solutions. J Phys. 2004;16:R357.
  • Kishikawa Y, Wiegand S, Kita R. Temperature dependence of Soret coefficient in aqueous and nonaqueous solutions of pullulan. Biomacromolecules. 2010;11:740–747. doi: 10.1021/bm9013149
  • Mast CB, Braun D. Thermal trap for DNA replication. Phys Rev Lett. 2010;104:188102. doi: 10.1103/PhysRevLett.104.188102
  • Duhr S, Braun D. Why molecules move along a temperature gradient. Proc Natl Acad Sci. 2006;103:19678–19682. doi: 10.1073/pnas.0603873103
  • Sugaya R, Wolf B, Kita R. Thermal diffusion of dextran in aqueous solutions in the absence and the presence of urea. Biomacromolecules. 2006;7:435–440. doi: 10.1021/bm050545r
  • Königer A, Meier B, Köhler W. Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol-water mixtures using a beam deflection technique. Philos Mag. 2009;89:907–923. doi: 10.1080/14786430902814029
  • Maeda K, Shinyashiki N, Yagihara S, et al. Ludwig-Soret effect of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol: temperature, molecular weight, and hydrogen bond effect. J Chem Phys. 2015;143:124504. doi: 10.1063/1.4931115
  • Di Lecce S, Albrecht T, Bresme F. A computational approach to calculate the heat of transport of aqueous solutions. Sci Rep. 2017;7:44833. doi: 10.1038/srep44833
  • Ning H, Wiegand S. Experimental investigation of the Soret effect in acetone/water and dimethylsulfoxide/water mixtures. J Chem Phys. 2006;125:221102.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101. doi: 10.1063/1.2408420
  • Di Lecce S, Albrecht T, Bresme F. The role of ion-water interactions in determining the Soret coefficient of LiCl aqueous solutions. Phys Chem Chem Phys. 2017;19:9575–9583. doi: 10.1039/C7CP01241A
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Dang L. Development of nonadditive intermolecular potentials using molecular dynamics: solvation of Li+ and F- ions in polarizable water. J Chem Phys. 1992;96:6970–6977. doi: 10.1063/1.462555
  • Dang L, Garrett B. Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations. J Chem Phys. 1993;99:2972–2977. doi: 10.1063/1.465203
  • Smith D, Dang L. Computer simulations of NaCl association in polarizable water. J Chem Phys. 1994;100:3757–3766. doi: 10.1063/1.466363
  • Dang L. Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study. J Am Chem Soc. 1995;117:6954–6960. doi: 10.1021/ja00131a018
  • Deublein S, Vrabec J, Hasse H. A set of molecular models for alkali and halide ions in aqueous solution. J Chem Phys. 2012;136:084501. doi: 10.1063/1.3687238
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092. doi: 10.1063/1.464397
  • Di Lecce S, Bresme F. Thermal polarization of water influences the thermoelectric response of aqueous solutions. J Phys Chem B. 2018;122:1662–1668. doi: 10.1021/acs.jpcb.7b10960
  • Lyubartsev AP, Laasonen K, Laaksonen A. Hydration of Li+ ion. An ab initio molecular dynamics simulation. J Chem Phys. 2001;114(7):3120–3126. doi: 10.1063/1.1342815
  • de Groot S, Mazur P, Non-equilibrium thermodynamics, Dover, 1984. (Dover Books on Physics Series).
  • Miller NAT, Daivis PJ, Snook IK, et al. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture. J Chem Phys. 2013;139:144504. doi: 10.1063/1.4824140
  • Davis PS, Theeuwes F, Bearman RJ, et al. Nonsteadystate hot wire, thermal conductivity apparatus. J Chem Phys. 1971;55(10):4776–4783. doi: 10.1063/1.1675577

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.