597
Views
14
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension

, , , &
Pages 1252-1260 | Received 27 Sep 2017, Accepted 02 Jun 2018, Published online: 25 Jun 2018

References

  • Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc A. 1921;221(582):163–198. doi: 10.1098/rsta.1921.0006
  • Anderson TL. Fracture mechanics: fundamentals and applications. 3rd ed. Boca Raton (FL): CRC Press; 2005.
  • Vehoff H, Neumann P. In situ SEM experiments concerning the mechanism of ductile crack growth. Acta Metal. 1979;27(5):915–920. doi: 10.1016/0001-6160(79)90126-3
  • Ohr SM. An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater Sci Eng. 1985;72(1):1–35. doi: 10.1016/0025-5416(85)90064-3
  • Guo P, Zhao YQ, Hong Q, et al. Fatigue crack propagation and crack tip plasticity zone of TC4-DT titanium alloy. Rare Metal Mater Eng. 1998;27(1):87, 2014;43(6):1479–1482.
  • Flavien F, Sylvie P, Martin P, et al. Load path effect on fatigue crack propagation in mixed mode conditions – Part 1: experimental investigations. Int J Fatigue. 2014;62(62):104–112.
  • Rafii-Tabar H, Shodja HM, Darabi M, et al. Molecular dynamics simulation of crack propagation in FCC materials containing clusters of impurities. Mech Mater. 2006;38(3):243–252. doi: 10.1016/j.mechmat.2005.06.006
  • Cao LX, Wang CY. Molecular dynamics simulation of fracture in α-iron. Acta Phys Sin. 2007;56(1):413–422.
  • Xu S, Deng X. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal. Nanotechnology. 2008;19(11):4418–4426.
  • Wu WP, Yao ZZ. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel. Theor Appl Fract Mech. 2012;62(4):67–75. doi: 10.1016/j.tafmec.2013.01.008
  • Abraham FF, Brodbeck D, Rudge WE, et al. A molecular dynamics investigation of rapid fracture mechanics. J Mech Phys Solids. 1997;45(9):1595–1619. doi: 10.1016/S0022-5096(96)00103-2
  • Swadener JG, Baskes MI, Nastasi M. Molecular dynamics simulation of brittle fracture in silicon. Phys Rev Lett. 2002;89(8):4463–4482. doi: 10.1103/PhysRevLett.89.085503
  • Hauch JA, Holland D, Marder MP, et al. Dynamic fracture in single crystal silicon. Phys Rev Lett. 1999;82(19):3823–3826. doi: 10.1103/PhysRevLett.82.3823
  • Falk ML. A molecular-dynamics study of ductile and brittle fracture in model non-crystalline solids. Phys Rev B. 1999;60(10):7062–7070. doi: 10.1103/PhysRevB.60.7062
  • Abraham FF, Broughton JQ. Large-scale simulations of brittle and ductile failure in FCC crystals. Comp Mater Sci. 1998;10(1):1–9. doi: 10.1016/S0927-0256(97)00092-X
  • Guo YF, Wang CY, Zhao DL. Atomistic simulation of crack cleavage and blunting in BCC-Fe. Mat Sci Eng A. 2003;349(1):29–35. doi: 10.1016/S0921-5093(02)00287-3
  • Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Model Simul Mater Sci Eng. 2003;11(5):745–753. doi: 10.1088/0965-0393/11/5/303
  • Zhou SJ, Beazley BM, Lomdahl PS, et al. Large-scale molecular dynamics simulation of three-dimensional ductile failure. Phys Rev Lett. 1997;78(3):479–482. doi: 10.1103/PhysRevLett.78.479
  • Abraham FF, Walkup R, Gao HJ, et al. Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening. Proc Natl Acad Sci USA. 2002;99(9):5783–5787. doi: 10.1073/pnas.062054999
  • Liu ZG, Wang CY, Yu T. Influence of Re on the propagation of a Ni/Ni3 Al interface crack by molecular dynamics simulation. Model Simul Mater Sci Eng. 2013;21(4):45009. doi: 10.1088/0965-0393/21/4/045009
  • Yang ZY, Zhou YG, Wang T, et al. Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation. Comp Mater Sci. 2014;82(3):17–25. doi: 10.1016/j.commatsci.2013.09.029
  • Peng W, Xinhua Y, Xiaobao T. Fracture behavior of nanocrystals with grain size gradients. J Mater Res. 2015;30(5):709–716. doi: 10.1557/jmr.2015.28
  • Mishin Y, Mehl MJ. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B. 2001;63(22):12. doi: 10.1103/PhysRevB.63.224106
  • Sun DY, Mendeley MI, Becker CA, et al. Phys Rev B. 2006;73(2):1. doi: 10.1103/PhysRevB.73.024116
  • Gao KW, Qiao LJ, Chu WY. In situ tem observation of crack healing in α-Fe. Scripta Mater. 2001;44:1055–1059. doi: 10.1016/S1359-6462(01)00671-6
  • Wang ZL. High-temperature tensile properties and micro-structure of CP-Ti subjected to laser shock peening. Zhen jiang: Jiangsu University; 2015:45–46.
  • Zhong QP, Zhao ZH. Fractography. Beijing: Higher Education Press; 2006.
  • Le XG, Zhou ZH, Ma Y, et al. Acta Aeronautica Sinica. 2010;31(9):1900.
  • Potirniche GP, Horstemeyer MF, Wagner GJ, et al. A molecular dynamics study of void growth and coalescence in single crystal nickel. Int J Plast. 2006;22(2):25. doi: 10.1016/j.ijplas.2005.02.001
  • Chang L, Zhou C-Y, Wen L-L, et al. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire. Comp Mater Sci. 2017;128(2017):348–358. doi: 10.1016/j.commatsci.2016.11.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.