243
Views
8
CrossRef citations to date
0
Altmetric
Articles

Modelling water with simple Mercedes-Benz models

Pages 279-294 | Received 24 May 2018, Accepted 14 Jul 2018, Published online: 01 Aug 2018

References

  • Chaplin M. Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol. 2006;7:861–866. doi: 10.1038/nrm2021
  • Tait MJ, Franks F. Water in biological systems. Nature. 1971;230:91–94. doi: 10.1038/230091a0
  • Gallo P, Amann-Winkel K, Angell CA, et al. Water: a tale of two liquids. Chem Rev. 2016;116:7463–7500. doi: 10.1021/acs.chemrev.5b00750
  • Brini E, Fennell CJ, Fernandez-Serra M, et al. How water's properties are encoded in its molecular structure and energies. Chem Rev. 2017;117:12385–12414. doi: 10.1021/acs.chemrev.7b00259
  • Franks F, editor. Water: a comprehensive treatise. Vol. 17. New York: Plenum Press; 1972–1980.
  • Eisenberg D, Kauzmann W. The structure and properties of water. Oxford: Oxford University Press; 1969.
  • Sharma R, Chakraborty SN, Chakravarty C. Entropy, diffusivity, and structural order in liquids with waterlike anomalies. J Chem Phys. 2006;125:204501.
  • Shell MS, Debenedetti PG, Panagiotopoulos AZ. Generalization of the Wang–Landau method for off-lattice simulations. Phys Rev E. 2002;66:056703.
  • Poole PH, Hemmati M, Angell CA. Comparison of thermodynamic properties of simulated liquid silica and water. Phys Rev Lett. 1997;79:2281–2284. doi: 10.1103/PhysRevLett.79.2281
  • Kincaid JM, Stell G. Structure factor of a one-dimensional shouldered hard-sphere fluid. Phys Lett A. 1978;65:131–134. doi: 10.1016/0375-9601(78)90594-7
  • Lamparter P, Stieb S, Knoll W. Struktur von Schmelzen aus dem System Wismut-Antimon mittels Neutronenbeugung. Z Naturforsch A. 1976;31:90–104. doi: 10.1515/zna-1976-0114
  • Thurn H, Ruska J. Change of bonding system in liquid SexTe1–1 alloys as shown by density measurements. J Non-Cryst Solids. 1976;22:331–343. doi: 10.1016/0022-3093(76)90063-6
  • Sauer GE, Borst LB. Lambda transition in liquid sulfur. Science. 1967;158:1567–1569. doi: 10.1126/science.158.3808.1567
  • Angell CA, Finch ED, Bach P. Spin–echo diffusion coefficients of water to 2380 bar and −20∘C. J Chem Phys. 1976;65:3063–3066. doi: 10.1063/1.433518
  • Prielmeier FX, Lang EW, Speedy RJ, et al. Diffusion in supercooled water to 300 MPa. Phys Rev Lett. 1987;59:1128–1131. doi: 10.1103/PhysRevLett.59.1128
  • Errington JR, Debenedetti PG. Relationship between structural order and the anomalies of liquid water. Nat (Lond). 2001;409:318–321. doi: 10.1038/35053024
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Nezbeda I. Simple short-ranged models of water and their application. A review. J Mol Liquids. 1997;73/74:317–336. doi: 10.1016/S0167-7322(97)00076-7
  • Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liquids. 2002;101:219–260. doi: 10.1016/S0167-7322(02)00094-6
  • Vega C, Abascal JLF, Conde MM, et al. What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 2009;141:251–276. doi: 10.1039/B805531A
  • Stillinger FH. Water revisited. Science. 1980;209:451–457. doi: 10.1126/science.209.4455.451
  • Tanford C. The hydrophobic effect: formation of micelles and biological membranes. 2nd ed. New York: Wiley; 1980.
  • Blokzijl W, Engberts JBFN. Hydrophobic effects. Opinions and facts. Angew Chem Int Edn Engl. 1993;32:1545–1579. doi: 10.1002/anie.199315451
  • Robinson G, Zhu S-B, Singh S, et al. Water in biology, chemistry and physics: experimental overviews and computational methodologies. Singapore: World Scientific; 1996.
  • Schmidt R. Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule. Monatshefte Chem. 1993;132:1295–1326. doi: 10.1007/s007060170019
  • Ben-Naim A. Hydrophobic hydrophilic phenomena in biochemical processes. Biophys Chem. 2003;105:183–193. doi: 10.1016/S0301-4622(03)00088-7
  • Pratt LR. Molecular theory of hydrophobic effects: ‘She is too mean to have her name repeated’. Annu Rev Phys Chem. 2002;53:409–436. doi: 10.1146/annurev.physchem.53.090401.093500
  • Lipkowitz KB, Boyd DB, Smith SJ, et al. The development of computational chemistry in the United Kingdom. Rev Comput Chem. 2007;10:271–316.
  • Baerends EJ, Gritsenko OV. A quantum chemical view of density functional theory. J Phys Chem A. 1997;101:5383–5403. doi: 10.1021/jp9703768
  • van der Spoel D, van Maaren PJ, Berendsen HJC. A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys. 1998;108:10220–10230. doi: 10.1063/1.476482
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120:9665–9678. doi: 10.1063/1.1683075
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505. doi: 10.1063/1.2121687
  • Soetens J-C, Millot C, Chipot C, et al. Effect of polarizability on the potential of mean force of two cations. The Guanidinium–Guanidinium ion pair in water. J Phys Chem B. 1997;101:10910–10917. doi: 10.1021/jp972113j
  • Hess B, van der Vegt NFA. Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B. 2006;110:17616–17626. doi: 10.1021/jp0641029
  • Truskett TM, Debenedetti PG, Sastry S, et al. A single-bond approach to orientation-dependent interactions and its implications for liquid water. J Chem Phys. 1999;111:2647–2656. doi: 10.1063/1.479540
  • Dill KA, Truskett TM, Vlachy V, et al. Modeling water, the hydrophobic effect, and ion solvation. Ann Rev Biophys Biomol Struct. 2005;34:173–199. doi: 10.1146/annurev.biophys.34.040204.144517
  • Nezbeda I, Kolafa J, Kalyuzhnyi Yu. V. Primitive model of water. Mol Phys. 1989;68:143–160. doi: 10.1080/00268978900102021
  • Nezbeda I, Iglezias–Silva GA. Primitive model of water. Mol Phys. 1990;69:767–774. doi: 10.1080/00268979000100561
  • Silverstein KAT, Haymet ADJ, Dill KA. A simple model of water and the hydrophobic effect. J Am Chem Soc. 1998;120:3166–3175. doi: 10.1021/ja973029k
  • Silverstein KAT, Dill KA, Haymet ADJ. Hydrophobicity in a simple model of water: solvation and hydrogen bond energies. Fluid Phase Equilib. 1998;150–151:83–90. doi: 10.1016/S0378-3812(98)00278-7
  • Ben–Naim A. Statistical mechanics of ‘waterlike’ particles in two dimensions. I. Physical model and application of the Percus–Yevick equation. J Chem Phys. 1971;54:3682–3695. doi: 10.1063/1.1675414
  • Ben–Naim A. Statistical mechanics of water-like particles in two-dimensions. Mol Phys. 1972;24:705–721. doi: 10.1080/00268977200101851
  • Southall NT, Dill KA. The mechanism of hydrophobic solvation depends on solute radius. J Phys Chem B. 2000;104:1326–1331. doi: 10.1021/jp992860b
  • Silverstein KAT, Haymet ADJ, Dill KA. Hydrophobicity in a simple model of water: entropy penalty as a sum of competing terms via full, angular expansion. J Chem Phys. 2001;114:6303–6314. doi: 10.1063/1.1355997
  • Dias CL, Hynninen T, Ala–Nissila T, et al. Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force. J Chem Phys. 2011;134:065106. doi: 10.1063/1.3537734
  • Dias CL. Unifying microscopic mechanism for pressure and cold denaturations of proteins. Phys Rev Lett. 2012;109:048104.
  • Bizjak A, Urbic T, Vlachy V, et al. The three–dimensional “Mercedes Benz” model of water. Acta Chim Slov. 2007;54:532–537.
  • Bizjak A, Urbic T, Vlachy V, et al. Theory for the three-dimensional Mercedes-Benz model of water. J Chem Phys. 2009;131:194504. doi: 10.1063/1.3259970
  • Dias CL, Ala-Nissila T, Grant M, et al. Three-dimensional ‘Mercedes-Benz’ model for water. J Chem Phys. 2009;131:054505. doi: 10.1063/1.3183935
  • Urbic T, Vlachy V, Kalyuzhnyi YuV, et al. A two-dimensional model of water: theory and computer simulations. J Chem Phys. 2000;112:2843–2848. doi: 10.1063/1.480928
  • Urbic T, Vlachy V, Kalyuzhnyi YuV, et al. A two-dimensional model of water: solvation of nonpolar solutes. J Chem Phys. 2002;116:723–729. doi: 10.1063/1.1427307
  • Urbic T, Vlachy V, Kalyuzhnyi YuV, et al. Orientation-dependent integral equation theory for a two-dimensional model of water. J Chem Phys. 2003;118:5516–5525. doi: 10.1063/1.1556754
  • Urbic T, Vlachy V, Pizio O, et al. Water-like fluid in the presence of Lennard–Jones obstacles: predictions of an associative replica Ornstein–Zernike theory. J Mol Liquids. 2004;112:71–80. doi: 10.1016/j.molliq.2003.12.001
  • Urbic T, Vlachy V, Kalyuzhnyi YuV, et al. An improved thermodynamic perturbation theory for Mercedes-Benz water. J Chem Phys. 2007;127:174511.
  • Urbic T, Holovko MF. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations. J Chem Phys. 2011;135:134706. doi: 10.1063/1.3644934
  • Urbic T, Dill KA. A statistical mechanical theory for a two-dimensional model of water. J Chem Phys. 2010;132:224507. doi: 10.1063/1.3454193
  • Urbic T. Analytical model for three-dimensional Mercedes-Benz water molecules. Phys Rev E. 2012;85:061503. doi: 10.1103/PhysRevE.85.061503
  • Urbic T. Liquid-liquid critical point in a simple analytical model of water. Phys Rev E. 2016;94:042126. doi: 10.1103/PhysRevE.94.042126
  • Urbic T. Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water. Phys Rev E. 2017;96:032122.
  • Urbic T, Vlachy V, Pizio O, et al. Water-like fluid in the presence of Lennard–Jones obstacles: predictions of an associative replica Ornstein–Zernike theory. J Mol Liquids. 2004;112:71–80. doi: 10.1016/j.molliq.2003.12.001
  • Kurtjak M, Urbic T. Water in the presence of inert Lennard–Jones obstacles. Mol Phys. 2014;112:1132–1148. doi: 10.1080/00268976.2013.836608
  • Kurtjak M, Urbic T. A simple water model in the presence of inert Lennard–Jones obstacles. II: The hydrophobic effect. Mol Phys. 2015;113:727–738. doi: 10.1080/00268976.2014.973919
  • Urbic T, Vlachy V, Dill KA. Confined water: a Mercedes-Benz model study. J Phys Chem B. 2006;110:4963–4970. doi: 10.1021/jp055543f
  • Urbic T, Holovko MF. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations. J Chem Phys. 2011;135:1–9. doi: 10.1063/1.3644934
  • Urbic T, Mohoric T. Effects of translational and rotational degrees of freedom on properties of the Mercedes-Benz water model. J Chem Phys. 2017;146:094505. doi: 10.1063/1.4977214
  • Wertheim MS. Fluids with highly directional attractive forces. III. Multiple attraction sites. J Stat Phys. 1986;42:459–477. doi: 10.1007/BF01127721
  • Wertheim MS. Thermodynamic perturbation theory of polymerization. J Chem Phys. 1987;87:7323–7331. doi: 10.1063/1.453326
  • Muller EA, Gubbins KE. Associating fluids and fluid mixtures. In: Sengers JV, Ewing MB, Kayser RF, Peters CJ, editors. Equations of state for fluids and fluid mixtures. Amsterdam: Elsevier Science. 2000. p. 435–477.
  • Kalyuzhnyi YuV, Cummings PT. Equations of state from analytically solvable integral-equation approximations. In: Sengers JV, Ewing MB, Kayser RF, Peters CJ, editors. Equations of state for fluids and fluid mixtures. Amsterdam: Elsevier Science. 2000. p. 169–254.
  • Wertheim MS. Integral equation for the Smith–Nezbeda model of associated fluids. J Chem Phys. 1987;88:1145–1155. doi: 10.1063/1.454233
  • Wertheim MS. Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. J Chem Phys. 1986;85:2929–2936. doi: 10.1063/1.451002
  • Urbic T. Integral equation and thermodynamic perturbation theory for a two-dimensional model of dimerising fluid. J Mol Liquids. 2017;228:32–37. doi: 10.1016/j.molliq.2016.09.061
  • Urbic T. Integral equation and thermodynamic perturbation theory for a two-dimensional model of chain-forming fluid. J Mol Liquids. 2017;238:129–135. doi: 10.1016/j.molliq.2017.04.095
  • Truskett TM, Dill KA. Predicting water's phase diagram and liquid-state anomalies. J Chem Phys. 2002;117:5101–5104. doi: 10.1063/1.1505438
  • Truskett TM, Dill KA. A simple statistical mechanical model of water. J Phys Chem B. 2002;106:11829–11842. doi: 10.1021/jp021418h
  • Hansen JP, McDonald IR. Theory of simple liquids. London: Academic; 1986.
  • Frenkel D, Smit B. Molecular simulation: from algorithms to applications. New York: Academic Press; 2000.
  • Yeh I-C, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B. 2004;108:15873–15879. doi: 10.1021/jp0477147
  • Jackson G, Chapman WG, Gubbins KE. Phase equilibria of associating fluids. Mol Phys. 1988;65:1–31. doi: 10.1080/00268978800100821
  • Vakarin EV, Duda YuJa, Holovko MF. Integral equation theory for the four bonding sites model of associating fluids. I. Structure factor and compressibility. Mol Phys. 1997;90:611–623.
  • Chang J, Sandler SI. The correlation functions of hard-sphere chain fluids: comparison of the Wertheim integral equation theory with the Monte Carlo simulation. J Chem Phys. 1995;102:437–449. doi: 10.1063/1.469421
  • Talman JD. Numerical Fourier and Bessel transforms in logarithmic variables. J Comp Phys. 1978;29:35–48. doi: 10.1016/0021-9991(78)90107-9
  • Jagla EA. Core-softened potentials and the anomalous properties of water. J Chem Phys. 1999;111:8980–8986. doi: 10.1063/1.480241
  • Bianchi E, Tartaglia P, Zaccarelli E, et al. Theoretical and numerical study of the phase diagram of patchy colloids: ordered and disordered patch arrangements. J Chem Phys. 2008;128:144504. doi: 10.1063/1.2888997
  • Kolafa J, Nezbeda I. Primitive models of associated liquids. Mol Phys. 1991;72:777–785. doi: 10.1080/00268979100100551
  • Netz PA, Starr FW, Stanley HE, et al. Static and dynamic properties of stretched water. J Chem Phys. 2001;115:344–388. doi: 10.1063/1.1376424
  • de Oliveira AB, Franzese G, Netz PA, et al. Waterlike hierarchy of anomalies in a continuous spherical shouldered potential. J Chem Phys. 2008;128:064901. doi: 10.1063/1.2830706
  • Franzese G, Malescio G, Skibinsky A, et al. Generic mechanism for generating a liquid–liquid phase transition. Nat (London). 2001;409:692–695. doi: 10.1038/35055514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.