126
Views
3
CrossRef citations to date
0
Altmetric
Articles

Specific properties of supercooled water in light of water anomalies

ORCID Icon &
Pages 304-309 | Received 26 Apr 2018, Accepted 22 Jul 2018, Published online: 03 Aug 2018

References

  • Franks F. Water a matrix of life. Cambridge, UK: Royal Society of Chemistry; 2000.
  • Ball P. Water—an enduring mystery. Nature. 2008;452:291–292. doi: 10.1038/452291a
  • Poole PH, Sciortino F, Essmann U, et al. Phase behaviour of metastable water. Nature. 1992;360:324–328. doi: 10.1038/360324a0
  • Lina C, Smitha JS, Sinogeikina SV, et al. Experimental evidence of low-density liquid water upon rapid decompression. PNAS. 2018;115:2010–2015. doi: 10.1073/pnas.1716310115
  • Bullock G, Molinero V. Low density liquid water is the mother of ice: on the relation between mesostructure, thermodynamics and ice crystallization in solutions. Faraday Discuss. 2013;167:371. doi: 10.1039/c3fd00085k
  • Tanaka H. A self-consistent phase diagram for supercooled water. Nature. 1996;380:328–330. doi: 10.1038/380328a0
  • Poole PH, Bowles RK, Saika-Voivod I, et al. Free energy surface of ST2 water near the liquid-liquid phase transition. J Chem Phys. 2013;138:034505. doi: 10.1063/1.4775738
  • Smallenburg F, Filion L, Sciortino F. Erasing no-mans land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles. Nat Phys. 2014;10:653–657. doi: 10.1038/nphys3030
  • Palmer J. C., Martelli F., Liu Y., et al. Metastable liquid-liquid transition in a molecular model of water. Nature. 2014;510:385–388. doi: 10.1038/nature13405
  • Nomura K., Kaneko T., Bai J., et al. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube. PNAS. 2017;114:4066–4071. doi: 10.1073/pnas.1701609114
  • Holten V, Bertrand CE, Anisimov MA, et al. Thermodynamics of supercooled water. J Chem Phys. 2012;136:094507. doi: 10.1063/1.3690497
  • Sciortino F. Which way to low-density liquid water?. PNAS. 2017;114:8141–8143. doi: 10.1073/pnas.1710601114
  • Le L, Molinero V. Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water. J Phys Chem A. 2011;115:5900–5907. doi: 10.1021/jp1102065
  • Moore EB, , Molinero V. Ice crystallization in waters no-mans land. J Chem Phys. 2010;132:244504. doi: 10.1063/1.3451112
  • Moore EB, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature. 2011;479:506–509. doi: 10.1038/nature10586
  • Pereyra RG, Szleifer I, Carignano MA. Temperature dependence of ice critical nucleus size. J Chem Phys. 2011;135:034508. doi: 10.1063/1.3613672
  • Li T, Donadio D, Russoc G, Galli G. Homogeneous ice nucleation from supercooled water. Phys Chem Chem Phys. 2011;13:19807–19813. doi: 10.1039/c1cp22167a
  • Limmer DT, Chandler D. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J Chem Phys. 2011;135:134503. doi: 10.1063/1.3643333
  • Limmer DT, Chandler D. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water II. J Chem Phys. 2013;138:214504. doi: 10.1063/1.4807479
  • Binder K, Kob W. Glassy materials and disordered solids. Singapore: World Scientific; 2011.
  • Anderson PW. Through the glass lightly. Science. 1995;267:1610. doi: 10.1126/science.267.5204.1610
  • Berthier L, Biroli G, Bouchaud JP, et al. Dynamical heterogeneities in glasses. Colloids and granular media. Oxford: Oxford University Press; 2011.
  • Pathria RK, Beale PD. Statistical mechanics. Oxford: Academic Press; 1996.
  • Berendsen H, Postma P, van Gunsteren W, et al. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Springer: 1981. pp. 331–342.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112:8910–8922. doi: 10.1063/1.481505
  • Mahoney MW, Jorgensen WL. Diffusion constant of the TIP5P model of liquid water. J Chem Phys. 2001;114:363–366. doi: 10.1063/1.1329346
  • Rick SW. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J Chem Phys. 2004;120:6085–6093. doi: 10.1063/1.1652434
  • Jorgensen WL, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Molinero V, Moore EB. Water modeled as an intermediate element between carbon and silicon. J Phys Chem B. 2009;113:4008–4016. doi: 10.1021/jp805227c
  • Malaspina DC, Bermudez di Lorenzo AJ, Ereyra RG, et al. The water supercooled regime as described by four common water models. J Chem Phys. 2013;139:024506. doi: 10.1063/1.4812928
  • Hadley KR, Mc Cabe C. Coarse-grained molecular models of water: a review. Mol Sim. 2012;38:671–681. doi: 10.1080/08927022.2012.671942
  • Accary JB, Teboul V. Time versus temperature rescaling for coarse grain molecular dynamics simulations. J Chem Phys. 2012;136:094502. doi: 10.1063/1.3690094
  • Perera A. On the microscopic structure of liquid water. Mol Phys. 2011;109:2433–2441. doi: 10.1080/00268976.2011.617712
  • Kerrache A, Teboul V, Monteil A. Screening dependence of the dynamical and structural properties of BKS silica. Chem Phys. 2006;321:69–74. doi: 10.1016/j.chemphys.2005.07.039
  • Teboul V. Cooperative motions in a finite size model of liquid silica: an anomalous behavior. Eur Phys J B. 2006;51:111–118. doi: 10.1140/epjb/e2006-00186-9
  • Taamalli S, Hinds J, Migirditch S, et al. Enhanced diffusion in finite-size simulations of a fragile diatomic glass former. Phys Rev E. 2016;94:052604. doi: 10.1103/PhysRevE.94.052604
  • Xu Y, Petrik NG, Smith RS, et al. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. PNAS. 2016;113:14921–14925. doi: 10.1073/pnas.1611395114
  • Liu L, Chen SH, Faraone A, et al. Pressure dependence of fragile to strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett. 2005;95:117802.
  • Schwegler E, Galli G, Gygi F. Water under pressure. Phys Rev Lett. 2000;84:2429. doi: 10.1103/PhysRevLett.84.2429
  • Teboul V. Pressure dependence of dynamical heterogeneity in water. J Phys Condens Matter. 2008;20:244116. doi: 10.1088/0953-8984/20/24/244116
  • Hansen JP, Mc Donald IR. Theory of simple liquids. London: Academic Press; 1986.
  • Kob W, Donati C, Plimpton SJ, et al. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys Rev Lett. 1997;79:2827–2830. doi: 10.1103/PhysRevLett.79.2827
  • Donati C, Douglas JF, Kob W, et al. Stringlike cooperative motions in a supercooled liquid. Phys Rev Lett. 1998;80:2338–2341. doi: 10.1103/PhysRevLett.80.2338
  • Teboul V, Saiddine M, Nunzi JM. Isomerization induced dynamic heterogeneity in a glass former below and above Tg. Phys Rev Lett. 2009;103:265701. doi: 10.1103/PhysRevLett.103.265701
  • Teboul V, Accary JB. Induced cooperative motions in a medium driven at the nanoscale: searching for an optimum excitation period. Phys Rev E. 2014;89:012303. doi: 10.1103/PhysRevE.89.012303
  • Teboul V, Maabou S, Fai LC, et al. A molecular dynamics investigation of dynamical heterogeneity in supercooled water. Eur Phys J B. 2005;43:355–362. doi: 10.1140/epjb/e2005-00063-1
  • Teboul V, Monteil A, Fai LC, et al. An investigation of string-like cooperative motion in a strong network glass-former. Eur Phys J B. 2004;40:49–54. doi: 10.1140/epjb/e2004-00237-3
  • Teboul V. Transient self-organisation of supercooled water confined inside nano-porous materials. Int J Nanotechnol. 2008;5:851. doi: 10.1504/IJNT.2008.018703
  • Požar M., Kerasidou A., Lovrinčevći B., et al. The microscopic structure of cold aqueous methanol mixtures. J Chem Phys. 2016;145:144502.
  • To compare the dynamic heterogeneity in two different media, the simplest method is to evaluate them in thermodynamic conditions leading to the same viscosity.
  • Kerasidou AP, Mauboussin Y, Teboul V. A simple diatomic potential that prevents crystallization in supercooled liquids simulations. Chem Phys. 2015;450–451:91–94. doi: 10.1016/j.chemphys.2015.02.009
  • Widmer-Cooper A, Harrowell P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys Rev Lett. 2006;96:185701. doi: 10.1103/PhysRevLett.96.185701
  • Widmer-Cooper A, Harrowell P. On the study of collective dynamics in supercooled liquids through the statistics of the isoconfigurational ensemble. J Chem Phys. 2007;126:154503. doi: 10.1063/1.2719192
  • Milischuk AA, Ladanyi BM. Structure and dynamics of water confined in silica nanopores. J Chem Phys. 2011;135:174709. doi: 10.1063/1.3657408
  • Bellissent-Funel MC. Structure of confined water. J Phys Condens Matter. 2001;13:9165–9177. doi: 10.1088/0953-8984/13/41/308
  • Bergman R, Swenson J. Dynamics of supercooled water in confined geometry. Nature. 2000;403:283–286. doi: 10.1038/35002027
  • Gallo P, Rovere M, Spohr E. Supercooled confined water and the mode coupling crossover temperature. Phys Rev Lett. 2000;85:4317–4320. doi: 10.1103/PhysRevLett.85.4317
  • Swenson J, Jansson H, Bergman R. Relaxation processes in supercooled water and implications for protein dynamics. Phys Rev Lett. 2006;96:247802.
  • Mann DJ, Halls MD. Water alignment and proton conduction inside carbon nanotubes. Phys Rev Lett. 2003;90:195503. doi: 10.1103/PhysRevLett.90.195503
  • Saparov S. M., Pfeifer J. R., Al-Momani L., et al. Mobility of a one-dimensional confined file of water molecules as a function of file length. Phys Rev Lett. 2006;96:148101. doi: 10.1103/PhysRevLett.96.148101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.