435
Views
27
CrossRef citations to date
0
Altmetric
Articles

Molecular simulation of the preferential adsorption of CH4 and CO2 in middle-rank coal

, , , &
Pages 15-25 | Received 11 Apr 2018, Accepted 04 Sep 2018, Published online: 15 Oct 2018

References

  • Feng-de Z, Hou W, Allinson G, et al. A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in Southeast Qinshui Basin, China. Int J Greenh Gas Con. 2013;19:26–40. doi: 10.1016/j.ijggc.2013.08.011
  • Brochard L, Vandamme M, Rolandj MP, et al. Adsorption-Induced deformation of microporous materials coal swelling induced by CO2-CH4 competitive adsorption. Langmuir. 2012;28:2659–2670. doi: 10.1021/la204072d
  • Pini R, Stefan O, Burlini L, et al. CO2 storage through ECBM recovery an experimental and modeling study. Energy Procedia. 2009;1:1711–1717. doi: 10.1016/j.egypro.2009.01.224
  • Bhowmik S, Dutta P. Investigation into the methane displacement behavior by cyclic, pure carbon dioxide injection in Dry, powdered, bituminous Indian coals. Energ Fuel. 2011;25:2730–2740. doi: 10.1021/ef200282q
  • Faiz MM, Saghafi A, Barclay SA, et al. Evaluating geological sequestration of CO2 in bituminous coals: the southern Sydney Basin, Australia as a natural analogue. Int J Greenh Gas Con. 2007;1:223–235. doi: 10.1016/S1750-5836(07)00026-6
  • Lu L, Shanshan W, Müller EA, et al. Adsorption and separation of CO2/CH4 mixtures using nanoporous adsorbents by molecular simulation. Fluid Phase Equilib. 2014;362:227–234. doi: 10.1016/j.fluid.2013.10.013
  • Song X, Liao W, Ma X, et al. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl Surf Sci. 2017;396:870–878. doi: 10.1016/j.apsusc.2016.11.050
  • Kim HJ, Shi Y, He J, et al. Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions. Chem Eng J. 2011;171:45–53. doi: 10.1016/j.cej.2011.03.035
  • Busch A, Yves G, Bernhard M, et al. Methane and carbon dioxide adsorption–diffusion experiments on coal: upscaling and modeling. Int J Coal Geol. 2004;60:151–168. doi: 10.1016/j.coal.2004.05.002
  • Krooss BM, Vanbergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int J Coal Geol. 2002;51:69–92. doi: 10.1016/S0166-5162(02)00078-2
  • Busch A. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures. Int J Coal Geol. 2003;55:205–224. doi: 10.1016/S0166-5162(03)00113-7
  • Yu H, Jing R, Wang P, et al. Preferential adsorption behaviour of CH 4 and CO 2 on high-rank coal from Qinshui Basin, China. Int J Min Sci Technol. 2014;24:491–497. doi: 10.1016/j.ijmst.2014.05.012
  • Ryan BD. An equation for estimation of maximum coalbed methane resource potential. British Columbia ministry of energy, mines, and petroleum resources. Geological Fieldwork 1991. 1992: 393–396.
  • Yee, D, Seidle, JP, Hanson, WB. Gas sorption on coal and measurement of gas content. In: Law, BE, Rice, DD, editors. Hydrocarbons from coal. AAPG Studies in Geology, 1993. p. 38.
  • Merkel A, Yves G, Bernhard M K, et al. Competitive sorption of CH4, CO2 and H2O on natural coals of different rank. Int J Coal Geol. 2015;150-151:181–192. doi: 10.1016/j.coal.2015.09.006
  • Garnier C, Finqueneisel G, Zimny T, et al. Selection of coals of different maturities for CO2 storage by modeling of CH4 and CO2 adsorption isotherms. Int J Coal Geol. 2011;87:80–86. doi: 10.1016/j.coal.2011.05.001
  • Goodman AL, Busch A, Duffy GJ, et al. An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples. Energy Fuels. 2004;18:1175–1182. doi: 10.1021/ef034104h
  • Ranathunga AS, Perera MA, Ranjith PG, et al. An experimental investigation of applicability of CO2 enhanced coal bed methane recovery to low-rank coal. Fuel. 2017;189:391–399. doi: 10.1016/j.fuel.2016.10.116
  • Guo H, Cheng Y, Wang L, et al. Experimental study on the effect of moisture on low-rank coal adsorption characteristics. J Nat Gas Sci Eng. 2015;24:245–251. doi: 10.1016/j.jngse.2015.03.037
  • Clarkson CR, Bustin RM. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. Int J Coal Geol. 2000;42:241–271. doi: 10.1016/S0166-5162(99)00032-4
  • Goodman AL, Busch, A, Bustin, RM, et al. Inter-laboratory comparison II: CO2 isotherms measured on moisture equilibrated Ar. 2007.
  • Gruszkiewicz MS, Naney MT, Blencoe JG, et al. Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama. Int J Coal Geol. 2009;77:23–33. doi: 10.1016/j.coal.2008.09.005
  • Mazumder S, Wolf KH. Differential swelling and permeability change of coal in response to CO2 injection for ECBM. Int J Coal Geol. 2008;74:123–138. doi: 10.1016/j.coal.2007.11.001
  • Xiao-Qiang L, He X, Nian-Xiang Q, et al. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal. Appl Surf Sci. 2016;389:894–905. doi: 10.1016/j.apsusc.2016.08.021
  • Jiang WP, Cui YJ, Zhang Q, et al. The quantum chemical study on the coal surface interacting with CH4 and CO2. Journal Of China Coal Society. 2006;31:237–240.
  • Guang-Ping L, Chao L, Hui X. Molecular simulation of adsorption and separation performances for CO2/CH4 mixtures in graphene/nanotube hybrid structures. Acta Phys Chim Sin. 2015;31(4):660–666.
  • Pini R, Stefan O, Storti G, et al. Prediction of competitive adsorption on coal by a lattice DFT model. Adsorption. 2010;16:37–46. doi: 10.1007/s10450-009-9197-2
  • Zhao Y, Feng Y, Zhang X. Selective adsorption and selective transport diffusion of CO2-CH4 binary mixture in coal ultramicropores. Environ Sci Technol. 2016;50:9380–9389. doi: 10.1021/acs.est.6b01294
  • Hu H, Du L, Xing Y, et al. Detailed study on self- and multicomponent diffusion of CO2-CH4 gas mixture in coal by molecular simulation. Fuel. 2017;187:220–228. doi: 10.1016/j.fuel.2016.09.056
  • You J, Tian L, Zhang C, et al. Adsorption behavior of carbon dioxide and methane in bituminous coal: A molecular simulation study. Chin J Chem Eng. 2016;24:1275–1282. doi: 10.1016/j.cjche.2016.05.008
  • Sui H, Yao J. Effect of surface chemistry for CH4CO2 adsorption in kerogen: A molecular simulation study. J Nat Gas Sci Eng. 2016;31:738–746. doi: 10.1016/j.jngse.2016.03.097
  • Larsen JW, Flowers RA, Hall PJ, et al. Structural rearrangement of strained coals. Energy Fuels. 1997;11:998–1002. doi: 10.1021/ef970014z
  • Takagi H, Maruyama K, Yoshizawa N, et al. XRD analysis of carbon stacking structure in coal during heat treatment. Fuel. 2004;83:2427–2433. doi: 10.1016/j.fuel.2004.06.019
  • Chamn O, Kang SG, Graham K, et al. A compulational approach to study the mineral composition of individual coal particles. Argonne National Laboratory. 2011;17(315).
  • Okolo G, Neomagus H P, Everson R, et al. Chemical–structural properties of South African bituminous coals-insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques. Fuel. 2015;158:779–792. doi: 10.1016/j.fuel.2015.06.027
  • Baysal M, Yürüm A, Yildiz B, et al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. Int J Coal Geol. 2016;163:166–176. doi: 10.1016/j.coal.2016.07.009
  • Dong K. Molecular structure model building and study of methane adsorption mechanism [Ph.D. thesis]. Taiyuan University of Technology; 2015.
  • Chen ZL, Xu WR, Tang LD. The theory and practice of molecular simulation (in Chinese). Beijing: Chemical Industry Press; 2007. p. 79–80.
  • Chen C-Y, Chen T-L, Wang B-C. Molecular dynamics simulation of separation mechanisms in bonded phase liquid chromatography. J Mol Struct THEOCHEM. 2002;577:81–90. doi: 10.1016/S0166-1280(01)00646-7
  • Mosher K, He J, Liu Y, et al. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int J Coal Geol. 2013;109–110:36–44. doi: 10.1016/j.coal.2013.01.001
  • Xia L, Liu Q. Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study. Comput Mater Sci. 2017;126:176–181. doi: 10.1016/j.commatsci.2016.09.039
  • Karavias F, Myers AL. Isosteric heats of multicomponent adsorption: thermodynamics and computer simulations. Langmuir. 1991;7:3118–3126. doi: 10.1021/la00060a035
  • Peng J, Ban H, Zhang X, et al. Binary adsorption equilibrium of propylene and ethylene on silicalite-1: prediction and experiment. Chem Phys Lett. 2005;401:94–98. doi: 10.1016/j.cplett.2004.11.036
  • Shi-Feng D, Bei-Bei Z, Su-ping P. Models of pure CO2 and pure CH4 adsorption on the late Paleozoic coals from the Kailuan coalfield, Hebei, China. Acta Geologica Sinica. 2009;83:731–737.
  • Jun CY, Qun Z, Hong Z, et al. Adsorption of different rank coals to single component gases. Nat Gas Indust. 2005;25:61–65.
  • Gensterblum Y, Busch A, Krooss BM. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel. 2014;115:581–588. doi: 10.1016/j.fuel.2013.07.014
  • Nannan Y, Liub S, Xiaoning Y. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material. Appl Surf Sci. 2015;356:1262–1271. doi: 10.1016/j.apsusc.2015.08.101
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–7895. doi: 10.1103/PhysRevB.41.7892
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(13244.
  • Liu X-Q, Xue Y, Tian Z-Y, et al. Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory. Appl Surf Sci. 2013;285:190–197. doi: 10.1016/j.apsusc.2013.08.035
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087. doi: 10.1063/1.1699114
  • Xiao-Qiang L, Zhi-Yue T, Wei C, et al. CH4, CO2 and H2O adsorption on nonmetallic atom-decorated graphene surfaces. Acta Phys Chim Sin. 2014;30(2):251–256.
  • Jiang Q, Chu W, Sun WJ, et al. A DFT study of methane adsorption on nitrogen-containing organic heterocycles. Acta Phys Chim Sin. 2012;28:1101–1106.
  • Xiang J-h, Zeng F-g, Liang H-z, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation. J Fuel Chem Technol. 2011;39(7):481–488. doi: 10.1016/S1872-5813(11)60031-5
  • Xiang J-H, Zeng F-G, Li B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation. J Fuel Chem Technol. 2013;41(4):391–400. doi: 10.1016/S1872-5813(13)60022-5
  • Liu FJ, Wei XY, Fan M, et al. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: a review. Appl Energy. 2016;170:415–436. doi: 10.1016/j.apenergy.2016.02.131
  • Li ZK, Wei XY, Yan HL, et al. Advances in lignite extraction and conversion under mild conditions. Energy Fuel. 2015;29:6869–6886. doi: 10.1021/acs.energyfuels.5b01108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.