486
Views
6
CrossRef citations to date
0
Altmetric
Articles

First-principles study of phase stability and elastic properties in metastable Ti-Mo alloys with cluster structure

, , , , &
Pages 26-34 | Received 07 Dec 2017, Accepted 17 Sep 2018, Published online: 27 Sep 2018

References

  • Kolli RP, Joost WJ, Ankem S. Phase stability and stress-induced transformations in beta titanium alloys. JOM. 2015;67:1273–1280. doi: 10.1007/s11837-015-1411-y
  • Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61:844–879. doi: 10.1016/j.actamat.2012.10.043
  • Min XH, Emura S, Nishimura T, et al. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys. Mater. Sci. Eng. A. 2010;527:5499–5506. doi: 10.1016/j.msea.2010.06.016
  • Zhao XF, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable young’s modulus for spinal fixation applications. Acta Biomater. 2012;8:1990–1997. doi: 10.1016/j.actbio.2012.02.004
  • Hanada S, Izumi O. Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys. Metall. Mater. Trans. A. 1987;18:265–271. doi: 10.1007/BF02825707
  • Ahmed M, Wexler D, Casillas G, et al. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Mater. 2015;84:124–135. doi: 10.1016/j.actamat.2014.10.043
  • Wang GR, Gao Q, Liu JX, et al. Composition design of beta-titanium alloys: theoretical, methodological and practical advances. Mater. Rev. 2017;03:44–51.
  • Min XH, Emura S, Sekido N, et al. Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy. Mater. Sci. Eng. A. 2010;527:2693–2701. doi: 10.1016/j.msea.2009.12.050
  • Collings EW, Ho JC. Solute-induced lattice stability as it relates to superconductivity in titanium-molybdenum alloys. Solid State Commun. 1976;18:1493–1495. doi: 10.1016/0038-1098(76)90377-X
  • Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters. Scripta Mater. 2006;55:477–480. doi: 10.1016/j.scriptamat.2006.04.022
  • Abdel-Hady M, Fuwa H, Hinoshita K, et al. Phase stability change with Zr content in β-type Ti-Nb alloys. Scripta Mater. 2007;57:1000–1003. doi: 10.1016/j.scriptamat.2007.08.003
  • Min XH, Emura S, Zhang L, et al. Effect of Fe and Zr additions on phase formation in β-type Ti-Mo alloys. Mater. Sci. Eng. A. 2008;497:74–78. doi: 10.1016/j.msea.2008.06.018
  • Hanada S, Izumi O. Transmission electron-microscopic observations of mechanical twinning in metastable beta titanium-alloys. Metall. Trans. A. 1986;17:1409–1420. doi: 10.1007/BF02650122
  • Bellaiche L, Vanderbilt D. Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B. 2000;61:7877–7882. doi: 10.1103/PhysRevB.61.7877
  • Li CX, Luo HB, Hu QM, et al. Lattice parameters and relative stability of alpha″ phase in binary titanium alloys from first-principles calculations. Solid State Commun. 2013;159:70–75. doi: 10.1016/j.ssc.2013.01.026
  • Zunger A, Wei SH, Ferreira LG, et al. Special quasirandom structures. Phys. Rev. Lett. 1990;65:353–356. doi: 10.1103/PhysRevLett.65.353
  • Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys. Phys. Rev. B. 2004;70:1–8. doi: 10.1103/PhysRevB.70.174113
  • Tegner BE, Zhu LG, Ackland GJ. Relative strength of phase stabilizers in titanium alloys. Phys. Rev. 2012;85:1–4. doi: 10.1103/PhysRevB.85.214106
  • Vitos L, Abrikosov IA, Johansson B. Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 2001;87:1–4. doi: 10.1103/PhysRevLett.87.156401
  • Sahara R, Emura S, Tsuchiya K. Theoretical investigation of effect of alloying elements on phase stability in body-centered cubic Ti-X alloys (X=V, Cr, Fe, Co, Nb, and Mo). J. Alloys Compd. 2015;634:193–199. doi: 10.1016/j.jallcom.2015.02.005
  • Li Z, Zhou ZH, Wang HB, et al. First-principles study on stability, and growth strategies of small AlnZr (N=1-9) clusters. J. Cryst. Growth. 2016;449:22–26. doi: 10.1016/j.jcrysgro.2016.05.038
  • Lu J, Wei SH, Zhang YY, et al. Geometric, electronic and magnetic properties of Au-N, Aun-1Pt and Aun-2Pt2 (N=2-9) clusters: a first-principles study. Comput. Theor. Chem. 2016;1090:157–164. doi: 10.1016/j.comptc.2016.06.009
  • Rodriguez-Kessler PL, Rodriguez-Dominguez AR. Structures and electronic properties of TinV (N=1-16) clusters: first-principles calculations. J. Phys. Chem. A. 2016;120:2401–2407. doi: 10.1021/acs.jpca.6b00224
  • Otani N, Kuwabara A, Ogawa T, et al. Theoretical investigation of solid solution states of Ti1-xVxH2. Acta Mater. 2017;134:274–282. doi: 10.1016/j.actamat.2017.04.073
  • Kresse D, Furthmüler J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Kern G, Kresse G, Hafner J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B. 1999;59:8551–8559. doi: 10.1103/PhysRevB.59.8551
  • Wu CY, Xin YH, Wang XF, et al. Effects of Ta content on the phase stability and elastic properties of β Ti-Ta alloys from first-principles calculations. Solid State Sci. 2010;12:2120–2124. doi: 10.1016/j.solidstatesciences.2010.09.009
  • Wan XJ, Wu CY, Tan CG, et al. Structure stability and elastic properties of beta type Ti-X (X=Nb, Mo) alloys from first-principles calculations. Rare Metal Mat. Eng. 2014;43:553–558. doi: 10.1016/S1875-5372(14)60075-8
  • Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys. Rev. B. 2003;68:1–4. doi: 10.1103/PhysRevB.68.184108
  • Talling RJ, Dashwood RJ, Jackson M, et al. Determination of (C(11)-C(12)) in Ti-36Nb-2Ta-3Zr-0.3O (wt.%) (Gum metal). Scripta Mater. 2008;59:669–672. doi: 10.1016/j.scriptamat.2008.05.022
  • Hill R. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307
  • Ouchi C. Metallurgy and technology of practical titanium alloys. In: S Fujishiro, D Eylon, T Kishi, editor. TMS. Pittsburgh (PA): Springer; 1994. p. 37–44.
  • Min XH, Bai PF, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy. Mater. Sci. Eng. A. 2017;684:534–541. doi: 10.1016/j.msea.2016.12.062
  • Li P, Hao JY, Zhao J, et al. The influence of ageing treatment on the microstructure and the elastic modulus of Ti27Nb8Zr alloy. Mater. Sci. Eng. A. 2010;527:7469–7474. doi: 10.1016/j.msea.2010.07.070
  • Zhang WD, Liu Y, Wu H, et al. Elastic modulus of phases in Ti-Mo alloys. Mater. Charact. 2015;106:302–307. doi: 10.1016/j.matchar.2015.06.008
  • Wang CH, Yang CD, Liu M, et al. Martensitic microstructures and mechanical properties of as-quenched metastable beta-type Ti-Mo alloys. J. Mater. Sci. 2016;51:6886–6896. doi: 10.1007/s10853-016-9976-6
  • Takemoto Y, Shimizu I, Sakakibara A, et al. Tensile behavior and cold workability of Ti-Mo alloys. Mater. Trans. 2004;45:1571–1576. doi: 10.2320/matertrans.45.1571
  • Zener C. Contributions to the theory of beta-phase alloys. Phys. Rev. 1947;71:846–851. doi: 10.1103/PhysRev.71.846
  • Lutjering G, Williams JC. Titanium. 2nd ed. Berlin: Springer; 2007.
  • Zhang Y, Liu ZY, Zhao ZS, et al. Preparation of pure α″-phase titanium alloys with low moduli via high pressure solution treatment. J. Alloys Compd. 2017;695:45–51. doi: 10.1016/j.jallcom.2016.10.053
  • Panigrahi A, Bönisch M, Waitz T, et al. Phase transformations and mechanical properties of biocompatible Ti-16.1Nb processed by severe plastic deformation. J. Alloys Compd. 2015;628:434–441. doi: 10.1016/j.jallcom.2014.12.159
  • Todaka Y, Sasaki J, Moto T, et al. Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scripta Mater. 2008;59:615–618. doi: 10.1016/j.scriptamat.2008.05.015
  • Tane M, Okuda Y, Todaka Y, et al. Elastic properties of single crystalline ω phase in titanium. Acta Mater. 2013;61:7543–7554. doi: 10.1016/j.actamat.2013.08.036
  • Silcock JM. An X-ray examination of the ω phase in TiV, TiMo and TiCr alloys. Acta Metall. 1958;6:481–493. doi: 10.1016/0001-6160(58)90111-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.