2,343
Views
17
CrossRef citations to date
0
Altmetric
Articles

A molecular dynamics study of water-soluble polymers: analysis of force fields from atomistic simulations

, , & ORCID Icon
Pages 310-321 | Received 19 Aug 2018, Accepted 25 Sep 2018, Published online: 12 Oct 2018

References

  • Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers. 2011;3:1972–2009. doi: 10.3390/polym3041972
  • Halake K, Birajdar M, Kim BS, et al. Recent application developments of water-soluble synthetic polymers. J Ind Eng Chem. 2014;20:3913–3918. doi: 10.1016/j.jiec.2014.01.006
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–327. doi: 10.1016/S1359-0286(02)00117-1
  • Rether A, Schuster M. Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym. 2003;57:13–21. doi: 10.1016/j.reactfunctpolym.2003.06.002
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011
  • Zhu C, Liu L, Yang Q, et al. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev. 2012;112:4687–4735. doi: 10.1021/cr200263w
  • Feng X, Liu L, Wang S, et al. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev. 2010;39:2411–2419. doi: 10.1039/b909065g
  • Magdeldin S, Enany S, Yoshida Y, et al. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin Proteomics. 2014;11:16. doi: 10.1186/1559-0275-11-16
  • Singh A. Synthesis and applications of polyacrylamide gels catalyzed by silver nitrate. J Appl Polym Sci. 2011;119:1084–1089. doi: 10.1002/app.32661
  • Ujjwal RR, Sharma T, Sangwai JS, et al. Rheological investigation of a random copolymer of polyacrylamide and polyacryloyl hydrazide (PAM-ran-PAH) for oil recovery applications. J Appl Polym Sci. 2017;134:44648.
  • Chen W, Liao W, Sohn YS, et al. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release. Adv Funct Mater. 2018;28:1705137. doi: 10.1002/adfm.201705137
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655–1670. doi: 10.1016/j.addr.2006.09.020
  • Guan Y, Zhang Y. PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter. 2011;7:6375–6384. doi: 10.1039/c0sm01541e
  • Zheng Q, Pan C. Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization. Eur Polym J. 2006;42:807–814. doi: 10.1016/j.eurpolymj.2005.10.002
  • Xu J, Luo S, Shi W, et al. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir. 2006;22:989–997. doi: 10.1021/la0522707
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68:34–45. doi: 10.1016/j.ejpb.2007.02.025
  • You Y-Z, Kalebaila KK, Brock SL, et al. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem Mater. 2008;20:3354–3359. doi: 10.1021/cm703363w
  • Říhová B. Biocompatibility of biomaterials: hemocompatibility, immunocompatiblity and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv Drug Deliv Rev. 1996;21:157–176. doi: 10.1016/S0169-409X(96)00404-8
  • Weber LM, Lopez CG, Anseth KS. Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J Biomed Mater Res Part A. 2009;90:720–729. doi: 10.1002/jbm.a.32134
  • Lee S, Tong X, Yang F. The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels. Acta Biomater. 2014;10:4167–4174. doi: 10.1016/j.actbio.2014.05.023
  • Secret E, Kelly SJ, Crannell KE, et al. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl Mater Interfaces. 2014;6:10313–10321. doi: 10.1021/am501754s
  • Durst CA, Cuchiara MP, Mansfield EG, et al. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 2011;7:2467–2476. doi: 10.1016/j.actbio.2011.02.018
  • Kolate A, Baradia D, Patil S, et al. PEG — a versatile conjugating ligand for drugs and drug delivery systems. J Control Release. 2014;192:67–81. doi: 10.1016/j.jconrel.2014.06.046
  • Li W, Zhan P, De CE, et al. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38:421–444. doi: 10.1016/j.progpolymsci.2012.07.006
  • Padmavathi NC, Chatterji PR. Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels. Macromolecules. 1996;29:1976–1979. doi: 10.1021/ma950827r
  • Tacx JCJF, Schoffeleers HM, Brands AGM, et al. Dissolution behavior and solution properties of polyvinylalcohol as determined by viscometry and light scattering in DMSO, ethyleneglycol and water. Polymer. 2000;41:947–957. doi: 10.1016/S0032-3861(99)00220-7
  • Kubota K, Fujishige S, Ando I. Solution properties of poly(N-isopropylacrylamide) in water. Polym J. 1990;22:15–20. doi: 10.1295/polymj.22.15
  • Kubota K, Hamano K, Kuwahara N, et al. Characterization of poly(N-isopropylmethacrylamide) in water. Polym J. 1990;22:1051–1057. doi: 10.1295/polymj.22.1051
  • Bucholz EW, Haskins JB, Monk JD, et al. Phenolic polymer solvation in water and ethylene glycol, I: molecular dynamics simulations. J Phys Chem B. 2017;121:2839–2851. doi: 10.1021/acs.jpcb.7b00326
  • de Oliveira TE, Marques CM, Netz PA. Molecular dynamics study of the LCST transition in aqueous poly(N-n-propylacrylamide). Phys Chem Chem Phys. 2018;20:10100–10107. doi: 10.1039/C8CP00481A
  • Wei Q, Wang Y, Chai W, et al. Effects of composition ratio on the properties of poly(vinyl alcohol)/poly(acrylic acid) blend membrane: a molecular dynamics simulation study. Mater Des. 2016;89:848–855. doi: 10.1016/j.matdes.2015.10.048
  • Wallqvist A, Teleman O. Properties of flexible water models. Mol Phys. 1991;74:515–533. doi: 10.1080/00268979100102391
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Ponder JW, Wu C, Ren P, et al. Current status of the AMOEBA polarizable force field. J Phys Chem B. 2010;114:2549–2564. doi: 10.1021/jp910674d
  • Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys. 1994;101:6141–6156. doi: 10.1063/1.468398
  • Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13:19663–19688. doi: 10.1039/c1cp22168j
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123:234505. doi: 10.1063/1.2121687
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112:8910–8922. doi: 10.1063/1.481505
  • Pastor RW, MacKerell Jr AD. Development of the CHARMM force field for lipids. J Phys Chem Lett. 2011;2:1526–1532. doi: 10.1021/jz200167q
  • Vorobyov I, Anisimov VM, Greene S, et al. Additive and classical drude polarizable force fields for linear and cyclic ethers. J Chem Theory Comput. 2007;3:1120–1133. doi: 10.1021/ct600350s
  • Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010;31:671–690.
  • Fuchs PFJ, Hansen HS, Hünenberger PH, et al. A GROMOS parameter set for vicinal diether functions: properties of polyethyleneoxide and polyethyleneglycol. J Chem Theory Comput. 2012;8:3943–3963. doi: 10.1021/ct300245h
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Intermolecular forces. Dordrecht, Holland: D. Reidel Publishing Company; 1981.
  • Nutt DR, Smith JC. Molecular dynamics simulations of proteins: can the explicit water model be varied? J Chem Theory Comput. 2007;3:1550–1560. doi: 10.1021/ct700053u
  • Glass DC, Krishnan M, Nutt DR, et al. Temperature dependence of protein dynamics simulated with three different water models. J Chem Theory Comput. 2010;6:1390–1400. doi: 10.1021/ct9006508
  • Hu Z, Jiang J. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal. J Comput Chem. 2009;31:371–380.
  • Hess B, Van der Vegt NFA. Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B. 2006;110:17616–17626. doi: 10.1021/jp0641029
  • Onufriev AV, Izadi S. Water models for biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci. 2018;8:1–40. doi: 10.1002/wcms.1347
  • Mayo SL, Olafson BD, Goddard III WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909. doi: 10.1021/j100389a010
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035
  • Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110:1657–1666. doi: 10.1021/ja00214a001
  • Larsen GS, Lin P, Hart KE, et al. Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules. 2011;44:6944–6951. doi: 10.1021/ma200345v
  • Wu C. Cooperative behavior of poly(vinyl alcohol) and water as revealed by molecular dynamics simulations. Polymer. 2010;51:4452–4460. doi: 10.1016/j.polymer.2010.07.019
  • Walter J, Ermatchkov V, Vrabec J, et al. Molecular dynamics and experimental study of conformation change of poly(N-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib. 2010;296:164–172. doi: 10.1016/j.fluid.2010.03.025
  • Sun H. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem. 1994;15:752–768. doi: 10.1002/jcc.540150708
  • Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–7364. doi: 10.1021/jp980939v
  • Sun H, Jin Z, Yang C, et al. COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model. 2016;22:47. doi: 10.1007/s00894-016-2909-0
  • Heinz H, Lin TJ, Kishore Mishra R, et al. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir. 2013;29:1754–1765. doi: 10.1021/la3038846
  • Chen P, Yao L, Liu Y, et al. Experimental and theoretical study of dilute polyacrylamide solutions: effect of salt concentration. J Mol Model. 2012;18:3153–3160. doi: 10.1007/s00894-011-1332-9
  • Lee H, Venable RM, MacKerell Jr. AD, et al. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys J. 2008;95:1590–1599. doi: 10.1529/biophysj.108.133025
  • Fischer J, Paschek D, Geiger A, et al. Modeling of aqueous poly(oxyethylene) solutions: 1. atomistic simulations. J Phys Chem B. 2008;112:2388–2398. doi: 10.1021/jp0765345
  • Wolfe S, Tel LM, Haines WJ, et al. The gauche effect. A study of localized molecular orbitals and excited-state geometries in FCH2OH. J Am Chem Soc. 1973;95:4863–4870. doi: 10.1021/ja00796a017
  • Wolfe S. Gauche effect. Stereochemical consequences of adjacent electron pairs and polar bonds. Acc Chem Res. 1972;5:102–111. doi: 10.1021/ar50051a003
  • Anderson PM, Wilson MR. Developing a force field for simulation of poly(ethylene oxide) based upon ab initio calculations of 1,2-dimethoxyethane. Mol Phys. 2005;103:89–97. doi: 10.1080/00268970412331293811
  • Barbosa NSV, Zhang Y, Lima ERA, et al. Development of an AMBER-compatible transferable force field for poly(ethylene glycol) ethers (glymes). J Mol Model. 2017;23:194. doi: 10.1007/s00894-017-3355-3
  • Barraza LF, Jiménez VA, Alderete JB. Effect of PEGylation on the structure and drug loading capacity of PAMAM-G4 dendrimers: a molecular modeling approach on the complexation of 5-fluorouracil with native and PEGylated PAMAM-G4. Macromol Chem Phys. 2015;216:1689–1701. doi: 10.1002/macp.201500179
  • Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002
  • Fortunato ME, Colina CM. Pysimm : a python package for simulation of molecular systems. SoftwareX. 2017;6:7–12. doi: 10.1016/j.softx.2016.12.002
  • Fortunato ME, Colina CM. pysimm. https://github.com/polysimtools/pysimm.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5
  • Hockney RW, Eastwood JW. Computer simulation using particles. New York: Adam Hilger; 1989.
  • Rubinstein M, Colby RH. Polymer physics. Oxford: OUP; 2003.
  • Klein J, Conrad KD. Characterisation of poly(acrylamide) in solution. Makromol Chem. 1980;181:227–240. doi: 10.1002/macp.1980.021810120
  • Rubinson KA, Krueger S. Poly(ethylene glycol)s 2000–8000 in water may be planar: a small-angle neutron scattering (SANS) structure study. Polymer. 2009;50:4852–4858. doi: 10.1016/j.polymer.2009.08.023
  • Theodorou DN, Suter UW. Shape of unperturbed linear polymers: polypropylene. J Chem Phys. 1985;18:1206–1214.
  • Han M, Chen P, Yang X. Molecular dynamics simulation of PAMAM dendrimer in aqueous solution. Polymer. 2005;46:3481–3488. doi: 10.1016/j.polymer.2005.02.107
  • Lee H, Baker JR, Larson RG, et al. Molecular dynamics studies of the size, shape, and internal structure of 0% and 90% acetylated fifth-generation polyamidoamine dendrimers in water and methanol. J Phys Chem B. 2006;110:4014–4019. doi: 10.1021/jp056148s
  • Arkın H, Janke W. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J Chem Phys. 2013;138:054904. doi: 10.1063/1.4788616
  • Levitt M, Hirshberg M, Sharon R, et al. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J Phys Chem B. 1997;101:5051–5061. doi: 10.1021/jp964020s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.