295
Views
7
CrossRef citations to date
0
Altmetric
Articles

Thermally triggered nanorocket from double-walled carbon nanotube in water

ORCID Icon, , , , & ORCID Icon
Pages 417-424 | Received 04 Jun 2018, Accepted 01 Oct 2018, Published online: 22 Oct 2018

References

  • Wang J. Nanomachines: fundamentals and applications. 1st ed. Weinheim: Wiley-VCH; 2013.
  • Gao W, Wang J. The environmental impact of micro/nanomachines: a review. ACS Nano. 2014;8(4):3170–3180. doi: 10.1021/nn500077a
  • Mavroidis C, Dubey A, Yarmush ML. Molecular machines. Annu Rev Biomed Eng. 2004;6:363–395. doi: 10.1146/annurev.bioeng.6.040803.140143
  • Kang JW, Kwon OK, Lee JH, et al. Molecular dynamics study of carbon nanotube oscillator on gold surface. Mol Simul. 2006;32(5):363–368. doi: 10.1080/08927020600755145
  • Ozin GA, Manners I, Fournier-Bidoz S, et al. Dream nanomachines. Adv Mater. 2005;17(24):3011–3018. doi: 10.1002/adma.200501767
  • Wang J, Manesh KM. Motion control at the nanoscale. Small. 2010;6(3):338–345. doi: 10.1002/smll.200901746
  • Li J, Rozen I, Wang J. Rocket science at the nanoscale. ACS Nano. 2016;10(6):5619–5634. doi: 10.1021/acsnano.6b02518
  • Credi A, Venturi M. Molecular machines operated by light. Central Eur J Chem. 2008;6(3):325–339.
  • Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science. 2000;289(5479):602–604. doi: 10.1126/science.289.5479.602
  • Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys Rev Lett. 2002;88:045503.
  • Legoas SB, Coluci VR, Braga SF, et al. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys Rev Lett. 2003;90(5):055504. doi: 10.1103/PhysRevLett.90.055504
  • Dong L, Nelson BJ, Fukuda T, et al. Towards nanotube linear servomotors. IEEE Trans Autom Sci Eng. 2006;3(3):228–235. doi: 10.1109/TASE.2006.875551
  • Somada H, Hirahara K, Akita S, et al. A molecular linear motor consisting of carbon nanotubes. Nano Lett. 2008;9(1):62–65. doi: 10.1021/nl802323n
  • Kang JW, Jiang Q, Hwang HJ. A double-walled carbon nanotube oscillator encapsulating a copper nanowire. Nanotechnology. 2006;17(21):5485–5490. doi: 10.1088/0957-4484/17/21/032
  • Yuan X, Wang Y. Atomistic simulations on interwall sliding behaviour of double-walled carbon nanotube: effects of structural defects. Mol Simul. 2017;43(12):953–961. doi: 10.1080/08927022.2017.1309652
  • Ueno Y, Somada H, Hirahara K, et al. Molecular dynamics simulations for molecular linear motor inside nanotube. Jpn J Appl Phys. 2009;48(6S):06FG03.
  • Zambrano HA, Walther JH, Jaffe RL. Thermally driven molecular linear motors: a molecular dynamics study. J Chem Phys. 2009;131(24):241104. doi: 10.1063/1.3281642
  • Guo W, Gao H. Optimized bearing and interlayer friction in multiwalled carbon nanotubes. Comput Model Eng Sci. 2005;7(1):19–34.
  • Kang JW, Song KO, Kwon OK, et al. Carbon nanotube oscillator operated by thermal expansion of encapsulated gases. Nanotechnology. 2005;16(11):2670–2676. doi: 10.1088/0957-4484/16/11/034
  • Xia Z, Curtin WA. Pullout forces and friction in multiwall carbon nanotubes. Phys Rev B. 2004;69(23):233408.
  • Li Y, Hu N, Yamamoto G, et al. Molecular mechanics simulation of the sliding behavior between nested walls in a multi-walled carbon nanotube. Carbon. 2010;48(10):2934–2940. doi: 10.1016/j.carbon.2010.04.031
  • Yamamoto G, Liu S, Hu N, et al. Prediction of pull-out force of multi-walled carbon nanotube (MWCNT) in sword-in-sheath mode. Comput Mater Sci. 2012;60:7–12. doi: 10.1016/j.commatsci.2012.03.016
  • Liu P, Zhang YW. Translational dynamic friction analysis of double-walled carbon nanotubes. Mol Simul. 2011;37(2):84–89. doi: 10.1080/08927022.2010.517530
  • Hess B, Kutzner C, Van Der Spoel D, et al. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447. doi: 10.1021/ct700301q
  • Kumar H, Dasgupta C, Maiti PK. Driving force of water entry into hydrophobic channels of carbon nanotubes: entropy or energy? Mol Simul. 2015;41(5-6):504–511. doi: 10.1080/08927022.2014.998211
  • Chiavazzo E, Fasano M, Asinari P, et al. Scaling behaviour for the water transport in nanoconfined geometries. Nat Commun. 2014;5:4565. doi: 10.1038/ncomms4565
  • Fasano M, Chiavazzo E, Asinari P. Water transport control in carbon nanotube arrays. Nanoscale Res Lett. 2014;9(1):559. doi: 10.1186/1556-276X-9-559
  • Robinson M, Marks N. Nanocap: a framework for generating capped carbon nanotubes and fullerenes. Comput Phys Commun. 2014;185(10):2519–2526. doi: 10.1016/j.cpc.2014.05.029
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–6271. doi: 10.1021/j100308a038
  • Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50(5):1055–1076. doi: 10.1080/00268978300102851
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190. doi: 10.1063/1.328693
  • Amendola V, Pilot R, Frasconi M, et al. Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter. 2017;29(20):203002. doi: 10.1088/1361-648X/aa60f3
  • Gizzatov A, Key J, Aryal S, et al. Hierarchically structured magnetic nanoconstructs with enhanced relaxivity and cooperative tumor accumulation. Adv Funct Mater. 2014;24(29):4584–4594. doi: 10.1002/adfm.201400653
  • Harris N, Ford MJ, Cortie MB. Optimization of plasmonic heating by gold nanospheres and nanoshells. J Phys Chem B. 2006;110(22):10701–10707. doi: 10.1021/jp0606208
  • Boriskina SV, Ghasemi H, Chen G. Plasmonic materials for energy: from physics to applications. Mater Today. 2013;16(10):375–386. doi: 10.1016/j.mattod.2013.09.003
  • Setoura K, Okada Y, Hashimoto S. Cw-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation. Phys Chem Chem Phys. 2014;16(48):26938–26945. doi: 10.1039/C4CP03733B
  • Carlson MT, Khan A, Richardson HH. Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett. 2011;11(3):1061–1069. doi: 10.1021/nl103938u
  • Bergamasco L, Alberghini M, Fasano M, et al. Mesoscopic moment equations for heat conduction: characteristic features and slow–fast mode decomposition. Entropy. 2018;20(2):126. doi: 10.3390/e20020126
  • Hockney R, Goel S, Eastwood J. Quiet high-resolution computer models of a plasma. J Comput Phys. 1974;14(2):148–158. doi: 10.1016/0021-9991(74)90010-2
  • Reißer S, Poger D, Stroet M, et al. Real cost of speed: the effect of a time-saving multiple-time-stepping algorithm on the accuracy of molecular dynamics simulations. J Chem Theory Comput. 2017;13(6):2367–2372. doi: 10.1021/acs.jctc.7b00178
  • Miyamoto S, Kollman PA. Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem. 1992;13(8):952–962. doi: 10.1002/jcc.540130805
  • Crisafulli A, Khodayari A, Mohammadnejad S, et al. Sliding dynamics of parallel graphene sheets: effect of geometry and van der Waals interactions on nano-spring behavior. Crystals. 2018;8(4):149. doi: 10.3390/cryst8040149
  • Karim MR, Li X, Kang P, et al. Ultrafast pulsed laser induced nanocrystal transformation in colloidal plasmonic vesicles. Adv Opt Mater. 2018;14:1800726.
  • Keller EL, Frontiera RR. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano. 2018;12(6):5848–5855. doi: 10.1021/acsnano.8b01809
  • Morciano M, Fasano M, Nold A, et al. Nonequilibrium molecular dynamics simulations of nanoconfined fluids at solid–liquid interfaces. J Chem Phys. 2017;146(24):244507. doi: 10.1063/1.4986904
  • Cox RG. The motion of long slender bodies in a viscous fluid part 1. General theory. J Fluid Mech. 1970;44(4):791–810. doi: 10.1017/S002211207000215X
  • Tascini AS, Armstrong J, Chiavazzo E, et al. Thermal transport across nanoparticle–fluid interfaces: the interplay of interfacial curvature and nanoparticle–fluid interactions. Phys Chem Chem Phys. 2017;19(4):3244–3253. doi: 10.1039/C6CP06403E
  • Konatham D, Papavassiliou D, Striolo A. Thermal boundary resistance at the graphene–graphene interface estimated by molecular dynamics simulations. Chem Phys Lett. 2012;527:47–50. doi: 10.1016/j.cplett.2012.01.007
  • Wang Y, Keblinski P. Role of wetting and nanoscale roughness on thermal conductance at liquid–solid interface. Appl Phys Lett. 2011;99(7):073112.
  • Alexeev D, Chen J, Walther JH, et al. Kapitza resistance between few-layer graphene and water: liquid layering effects. Nano Lett. 2015;15(9):5744–5749. doi: 10.1021/acs.nanolett.5b03024
  • Chen X, Chen H, Tripisciano C, et al. Carbon-nanotube-based stimuli-responsive controlled-release system. Chem A Eur J. 2011;17(16):4454–4459. doi: 10.1002/chem.201003355
  • Qin Y, Chen J, Bi Y, et al. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/ph sensitive nanovehicle. Acta Biomater. 2015;17:201–209. doi: 10.1016/j.actbio.2015.01.026
  • Lacerda L, Ali-Boucetta H, Kraszewski S, et al. How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale. 2013;5(21):10242–10250. doi: 10.1039/c3nr03184e
  • Rochal SB, Roshal DS, Myasnikova AE, et al. Commensurability between protein nanotubes in contractile ejection nanomachines. Nanoscale. 2018;10:758–764. doi: 10.1039/C7NR06940E
  • Cardellini A, Fasano M, Bigdeli MB, et al. Thermal transport phenomena in nanoparticle suspensions. J Phys Condens Matter. 2016;28(48):483003. doi: 10.1088/0953-8984/28/48/483003
  • Fasano M, Bigdeli MB. Bottom up approach toward prediction of effective thermophysical properties of carbon-based nanofluids. Heat Transfer Eng. 2017:1–12. doi:10.1080/01457632.2017.1384283.
  • Guerrero AR, Hassan N, Escobar CA, et al. Gold nanoparticles for photothermally controlled drug release. Nanomedicine. 2014;9(13):2023–2039. doi: 10.2217/nnm.14.126

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.