176
Views
2
CrossRef citations to date
0
Altmetric
Articles

MD Simulations and first principles to evaluate the role of binary Fe–V alloys layer on the radiation resistance in the alpha-iron

, , , , , & show all
Pages 178-185 | Received 12 Jul 2018, Accepted 07 Nov 2018, Published online: 29 Nov 2018

Reference

  • Bachhav M, Odette GR, Marquis EA. Microstructural changes in a neutron-irradiated Fe-15 at.%Cr alloy. J Nucl Mater. 2014;454:381–386. doi: 10.1016/j.jnucmat.2014.08.026
  • Terentyev D, Grammatikopoulos P, Bacon DJ, et al. Simulation of the interaction between an edge dislocation and a ‘100’ interstitial dislocation loop in alpha-iron. Acta Mater. 2008;56:5034–5046. doi: 10.1016/j.actamat.2008.06.032
  • Lv GC, Zhang H, He XF, et al. Vacancy enhanced formation and phase transition of Cu-rich precipitates in alpha – iron under neutron irradiation. Aip Adv. 2016;6:2158–3226.
  • Miyashiro S, Fujita S, Okita T. MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu. J Nucl Mater. 2011;415:1–4. doi: 10.1016/j.jnucmat.2011.03.056
  • Zarkadoula E, Daraszewicz SL, Duffy DM, et al. The nature of high-energy radiation damage in iron. J Phys-Condens Mat. 2013;25: 125402. doi: 10.1088/0953-8984/25/12/125402
  • Heinisch HL, Singh BN. Stochastic annealing simulation of differential defect production in high energy cascades. J Nucl Mater. 1996;232:206–213. doi: 10.1016/S0022-3115(96)00434-5
  • Malerba L. Molecular dynamics simulation of displacement cascades in alpha-Fe: A critical review. J Nucl Mater. 2006;351:28–38. doi: 10.1016/j.jnucmat.2006.02.023
  • Malerba L, Terentyev D, Olsson P, et al. Molecular dynamics simulation of displacement cascades in Fe-Cr alloys. J Nucl Mater. 2004;329-333:1156–1160. doi: 10.1016/j.jnucmat.2004.04.270
  • Terentyev DA, Bonny G, Malerba L. Strengthening due to coherent Cr precipitates in Fe-Cr alloys: Atomistic simulations and theoretical models. Acta Mater. 2008;56:3229–3235. doi: 10.1016/j.actamat.2008.03.004
  • Bjorkas C, Nordlund K, Malerba L, et al. Simulation of displacement cascades in Fe90Cr10 using a two band model potential. J Nucl Mater. 2008;372:312–317. doi: 10.1016/j.jnucmat.2007.03.265
  • Aliaga MJ, Schaublin R, Loffler JF, et al. Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films. Acta Mater. 2015;101:22–30. doi: 10.1016/j.actamat.2015.08.063
  • Soneda N, Ishino S, de la Rubia TD. Vacancy loop formation by ‘cascade collapse’ in alpha-Fe: a molecular dynamics study of 50 keV cascades. Philos Mag Lett. 2001;81:649–659. doi: 10.1080/09500830110062799
  • Bjorkas C, Nordlund K. Comparative study of cascade damage in Fe simulated with recent potentials. Nucl Instrum Meth B. 2007;259:853–860. doi: 10.1016/j.nimb.2007.03.076
  • Calder AF, Bacon DJ, Barashev AV, et al. Computer simulation of cascade damage in alpha-iron with carbon in solution. J Nucl Mater. 2008;382:91–95. doi: 10.1016/j.jnucmat.2008.08.016
  • Bacon DJ, Calder AF, Gao F. Defect production due to displacement cascades in metals as revealed by computer. J Nucl Mater. 1997;251:1–12. doi: 10.1016/S0022-3115(97)00216-X
  • Beeler B, Asta M, Hosemann P, et al. Effects of applied strain on radiation damage generation in body centered cubic iron. J Nucl Mater. 2015;459:159–165. doi: 10.1016/j.jnucmat.2014.12.111
  • Hwang J, Yoon T, Jin SH, et al. Enhanced Mechanical properties of graphene/copper nanocomposites using a molecular-level mixing Process. Adv Mater. 2013;25:6724–6729. doi: 10.1002/adma.201302495
  • Huang H, Tang XB, Chen FD, et al. Role of graphene layers on the radiation resistance of copper-graphene nanocomposite: inhibiting the expansion of thermal spike. J Nucl Mater. 2017;493:322–329. doi: 10.1016/j.jnucmat.2017.06.023
  • Zhang CG, Li YG, Zhou WH, et al. Anti-radiation mechanisms in nanoporous gold studied via molecular dynamics simulations. J Nucl Mater. 2015;466:328–333. doi: 10.1016/j.jnucmat.2015.08.003
  • Psakhie SG, Zolnikov KP, Kryzhevich DS, et al. Evolution of atomic collision cascades in vanadium crystal with internal structure. Crystallogr Rep+. 2009;54:1002–1010. doi: 10.1134/S1063774509060157
  • Tundwal A, Kumar V, Raghaw NS, et al. Monte Carlo simulation of radiation damage produced in iron and vanadium by primary knock on atom ‘PKA’. Radiat Eff Def S. 2016;171:658–667. doi: 10.1080/10420150.2016.1241784
  • Zepeda-Ruiz LA, Rottler J, Wirth BD, et al. Self-interstitial transport in vanadium. Acta Mater. 2005;53:1985–1994. doi: 10.1016/j.actamat.2005.01.010
  • Morishita K, de la Rubia TD. A molecular dynamics simulation study of displacement cascades in vanadium. J Nucl Mater. 1999;271-272:35–40. doi: 10.1016/S0022-3115(98)00643-6
  • Diaz DIRT, Guina MW. Mechanisms of defect production and atomic mixing in high energy displacement cascades: A molecular dynamics study. Mater Sci Forum. 1992;23:97–99.
  • Mendelev MI, Han SW, Son WJ, et al. Simulation of the interaction between Fe impurities and point defects in V. Phys Rev B. 2007;76:214105(11). doi: 10.1103/PhysRevB.76.214105
  • Jarvi TT, Pakarinen JA, Kuronen A, et al. Enhanced sputtering from nanoparticles and thin films: size effects. Epl-Europhys Lett. 2008;82:26002(4). doi: 10.1209/0295-5075/82/26002
  • Ren W, Kuronen A, Nordlund K. Molecular dynamics of irradiation-induced defect production in GaN nanowires. Phys Rev B. 2012;86:104114(7).
  • Chi M, Zhao YP. First principle study of the interaction and charge transfer between graphene and organic molecules. Comp Mater Sci. 2012;56:79–84. doi: 10.1016/j.commatsci.2011.12.035
  • Li DX, Yu DL, Huang Q, et al. First-principle studies of structural and electronic properties of layered B3C10N3. Comp Mater Sci. 2010;47:621–624. doi: 10.1016/j.commatsci.2009.08.015
  • Takahashi K, Tanaka Y. Material synthesis and design from first principle calculations and machine learning. Comp Mater Sci. 2016;112:364–367. doi: 10.1016/j.commatsci.2015.11.013
  • Ullah M, Rana AM, Ahmad E, et al. Phenomenological effets of tantalum incorporation into diamond films: experimental and first principle studies. Appl Surf Sci. 2016;380:83–90. doi: 10.1016/j.apsusc.2016.02.079
  • Abrikosov IA, Skriver HL. Self-consistent linear-muffin-Tin-orbitals coherent-potential technique for bulk and surface calculations - Cu-Ni, Ag-Pd, And Au-Pt random alloys. Phys Rev B. 1993;47:16532–16541. doi: 10.1103/PhysRevB.47.16532
  • Andersen OK, Jespen O, Krier G, et al. Lectures on methods of electronic structure calculations. World Scientific. 1994;63:62–124.
  • Vitos L, Abrikosov IA, Johansson B. Anisotropic lattice distortions in random alloys from first-principles theory. Phys Rev Lett. 2001;87:156405(4). doi: 10.1103/PhysRevLett.87.156401
  • Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533
  • Moruzzi VL, Janak JF, Schwarz K. Calculated thermal-properties of metals. Phys Rev B. 1988;37:790–799. doi: 10.1103/PhysRevB.37.790
  • Walker CT, Kittel C. Introduction to solid state physics. Science. 1967;155:991–1507. doi: 10.1126/science.155.3769.1489-a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.